SPONSOR

Iron Mining Association of Minnesota 324 West Superior Street, Suite 502 Duluth, MN 55802

TEST ITEM

Sulfide

STUDY TITLE

Hydroponics-Based Sulfide Toxicity Testing of Wild Rice (*Zizania palustris*) – Controlled Oxygen Headspace

DATA REQUIREMENT

Definitive Phase

STUDY DIRECTOR AND AUTHOR

Douglas J. Fort, Ph.D.

STUDY COMPLETION DATE

August 9, 2018

PERFORMING LABORATORY

Fort Environmental Laboratories, Inc. 515 South Duncan Street Stillwater, OK 74074

REPORT NUMBER

IMAM01-00428

Total Pages: 222

CERTIFICATION

The undersigned declare that this report provides an accurate evaluation of the data obtained from this study.

Study Director:

TARREST

8/9/2018

Douglas J. Fort, Ph.D., Study Director, FEL

Date

FEL

TABLE OF CONTENTS

UЕ	KTIFICATION	
ΤА	ABLE OF CONTENTS	3
	ST OF TABLES AND FIGURES	
	ST OF APPENDICES	
	ST OF ACRONYMS	
1.		
	1.1. Method	
	1.2. RESULTS AND CONCLUSIONS	
	1.2.1. Study Day 10	
	1.2.2. Study Day 21	
2.	INTRODUCTION	
3.	STUDY PERSONNEL	
4.	MATERIALS AND METHODS	11
	4.1. DILUTION WATER	
	4.2. TEST SUBSTANCE	
	4.3. TEST SYSTEM	12
	4.3.1. Origin and Handling	
	4.4. EXPOSURE SYSTEM	12
	4.4.1. Exposure System Maintenance	13
	4.5. WATER QUALITY ANALYSES	
	4.5.1. Water (Culture) Quality Analyses	
	4.6. TEST METHOD.	
	4.7. BIOLOGICAL ENDPOINTS / OBSERVATIONS	
	4.7.1. Data Collection and Biological Endpoints	15
	4.7.1.1. Activation	15
	4.7.1.2. Mesocotyl Emergence	15
	4.7.1.3. Seedling Survival	15
	4.7.1.4. Phytotoxicity (Free Leaf Phase)	16
	4.7.2. Day 0 Test Initiation and Sample Collection	16
	4.8. Data Analysis	16
5.	RESULTS 17	
5.1	. SULFIDE TOXICITY	17
	5.1.1. STUDY DAY 10	
	5.1.1.1. SULFIDE WITH 0.8 or 2.8 mg Fe/L	
	5.1.2. STUDY DAY 21	
	5.1.2.1. SULFIDE WITH 0.8 or 2.8 mg Fe/L	
6.	PERFORMANCE CRITERIA AND VALIDITY	
7.	DISCUSSION	
8.	CONCLUSION	
	REFERENCES	
	PPENDIX A. RAW DATA AND STATISTICAL ANALYSES	
AP	PPENDIX B. FORT ET AL. (2017)	212
LI	ST OF TABLES AND FIGURES	
ΤА	ABLE 1. SUMMARY OF MEASUREMENT ENDPOINTS AT SD 10	9
	ABLE 2. SUMMARY OF MEASUREMENT ENDPOINTS AT SD 21	
ΤА	ABLE 3. MODIFIED HOAGLAND'S SOLUTION – HS-1 WITH 1:4 AMMONIA:NITRATE	22
	ABLE 4. EXPERIMENTAL DESIGN	
	ABLE 5. EXPERIMENTAL CONDITIONS FOR HYDROPONIC STUDY – DEFINITIVE PHASE	
	ABLE 6. OBSERVATION TIME POINTS FOR PRIMARY ENDPOINTS	
	ABLE 7. GENERAL TEST PERFORMANCE CRITERIA	
	ABLE 8. WATER QUALITY SUMMARY	
	ABLE 8. WATER QUALITY SUMMARY (CONTINUED)	

TABLE 9.	SUMMARY OF MEASURED SULFIDE CONCENTRATIONS	27
TABLE 10.	STUDY DAY 10 ENDPOINT SUMMARY	
TABLE 10.	STUDY DAY 10 ENDPOINT SUMMARY (CONTINUED)	
TABLE 10.	STUDY DAY 10 ENDPOINT SUMMARY (CONTINUED)	
TABLE 11.	STUDY DAY 21 ENDPOINT SUMMARY	
TABLE 11.	STUDY DAY 21 ENDPOINT SUMMARY (CONTINUED)	
TABLE 11.	STUDY DAY 21 ENDPOINT SUMMARY (CONTINUED)	
TABLE 11.	STUDY DAY 21 ENDPOINT SUMMARY (CONTINUED)	
TABLE 12.	MEDIAN EMERGENCE TIME (MET) IN WILD RICE ON SD21	35
I ICT OF A	ADDENINICES	
LIST OF A	APPENDICES	
APPENDIX	A. RAW DATA AND STATISTICAL ANALYSES	36
	B. FORT ET AL. (2017)	
	(/ ,	
LIST OF A	ACRONYMS	
ANOVA –	analysis of variance	
B – boron		
ChV - Chro	onic value (geometric mean of NOEC and LOEC value)	
DO – disso	lved oxygen	
dw – dry w	• •	
•	ive concentration	
	Environmental Laboratories	
	ory concentration	
	A – ANOVA on ranks	
L - liter		
LC – lethal	concentration	

LOEC -lowest observed effects concentration

ET30 – time to 30% emergence

NOEC – no observed effects concentration

ORP – oxidation/reduction potential

PAH – polyaromatic hydrocarbon

SEM – standard error of the mean

SOP – standard operating procedure

SD – Study Day

1. SUMMARY

Guidelines: Protocol IMAM01-00428

Study Initiation

Date: March 6, 2018

Experimental

Start / End Dates: March 14, 2018 / April 4, 2018

Test Treatments: 1) Sulfide Treatments - HS-1 (1:4 ammonia-N:nitrate-N) [control],

0.30, 1.56, 3.12, 7.78 mg/L sulfide in the presence of 0.8 or 2.8 mg/L

Fe.

Time-Weighted Average (TWA) Test Concentrations (fresh solutions at renewal): 1) Sulfide Treatments - HS-1 (1:4 ammonia-N:nitrate-N) [control] <0.01, 0.38, 1.79, 3.33, and 7.94 mg/L sulfide each with 0.8 mg/L Fe; and 2) HS-1 (1:4 ammonia-N:nitrate-N) [control] <0.01, 0.38, 1.71,

3.39, and 7.71 mg/L sulfide each with 2.8 mg/L Fe.

Test

System: Seed

Source of

Seeds: Minnesota, USA

Summary of Endpoints: See Table 1

1.1. METHOD

The definitive wild rice sulfide toxicity study was conducted in a static-renewal format in an environmental chamber equipped for hydroponic studies (Table 3) as prescribed by Fort et al. (1) and study ENVIO1-00352. Test solution (0.7 of total volume) was renewed daily. Each of the four replicates per solution contained two 1-L mesh-lined sub-baskets. Plastic mesh served as the medium on which the seeds were placed and served as physical support required for plants growing in hydroponic culture. Each sub-basket contained 40 seeds (80/replicate at T0, total seed number = 320 per treatment), which was adequate to evaluate concentration-response relationships and assess significant differences in the treatments relative to the control. The 10 study days (SD) were performed in the dark to promote mesocotyl emergence and mimic development-stimulating sediment light conditions.

Visual assessments only (i.e., no plants harvested) of the following endpoints were conducted at SD 10 following dark-phase exposure to evaluate:

- Activation expressed as % activation;
- Mesocotyl Emergence expressed as % emergence;

• Time to emergence expressed as the time to 30% emergence (ET30) at the replicate and treatment levels;

- Seedling survival expressed as % survival; and
- Phytoxicity expressed as % affected.

All baskets were evaluated for the following endpoints, as well as total plant biomass and signs of phytotoxicity during the free leaf stage at study conclusion (SD 21):

- Activation expressed as % activation;
- Mesocotyl Emergence expressed as % emergence;
- Time to emergence expressed as the time to 30% emergence (ET30) at the replicate and treatment levels;
- Seedling survival;
- Shoot (mesocotyl, coleoptile and primary leaf) weight expressed as dry weight, or dw;
- Shoot (mesocotyl, coleoptile and primary leaf) lengths;
- Root (seminal and rootlets) dw;
- Seminal Root length; and
- Free leaf number and biomass dw.

Since the frequency of mesocotyl emergence was not anticipated to be 100%, an acceptable frequency of mesocotyl emergence was determined from the MDP (ENVI01-00324 and 00351) and is listed in Table 5. In addition to the HS-1 (1:4) negative control and HS-1 controls containing the additional iron concentrations, a 100 mg B/L treatment in HS-1 (1:4) media was included as a positive control toxicant. For all endpoint assessments (Table 4), plants were carefully removed at the conclusion of exposure using watch maker forceps and placed into Petri dishes for each replicate to evaluate the appropriate endpoints. Each set was digitally photographed, and length measurements of shoots and roots were recorded using digitization to the nearest mm. Weights (dw at 105°C) were recorded using an analytical balance capable of recording to the nearest 0.1 mg. The seminal root tissue was dissected from the seed, as well as the coleoptile and primary leaf (shoot) material, to specifically evaluate root tissue length (development).

1.2. RESULTS AND CONCLUSIONS

Results from the IMAM01-00428 study met the performance criteria established from Fort et al. (2017). Therefore, results from the study are considered valid. A summary of the 00428 results is provided in Tables 1 and 2. A consistent and anticipated adverse response to 100 mg B/L exposure was

noted. The pH was maintained at 6.0 to 7.5 s.u. in all replicates of the control and sulfide treatments, and ±0.5 s.u. within a given replicate for each daily measurement at T0 and T24 over the course of the study. DO levels were maintained at <2.0 mg/L in all treatments during the course of the study. Hydroponic chamber temperature was maintained at 21° ± 2°C (day) and 12 ± 2°C (night) in all replicates of control and treatments. The inter-replicate CV for both pre- and post-renewal TWA sulfide concentrations was ≤20% for each HS-1 control and associated sulfide treatments, indicating low variability between replicates of a given treatment or control. Free sulfide loss between 24-hour renewals ranged from 19.7 to 27.1% in the 0.8 mg Fe/L treatments, and 36.7% to 55.5% in the 2.8 mg Fe/L treatments, respectively based on TWA measurements. The loss was presumably due in part to degradation, but primarily complexation with Fe. These results demonstrate that iron reduces free sulfide concentrations, but not necessarily as a linear function of iron concentration.

Key findings from study 00428, expressed as nominal sulfide concentrations, included:

1.2.1. STUDY DAY 10

- Decreased emergence and increased median ET30, and the occurrence of phytotoxicity were observed in wild rice exposed to 100 mg B/L relative to the HS-1 control with 0.8 mg Fe/L.
- Sulfide exposure did not affect seed activation, seedling survival, or induce phytotoxicity at 7.78 mg/L in either of the Fe treatments.
- Emergence was the most sensitive endpoint, with respective SD 10 NOEC and LOEC values of 3.12 mg/L and 7.78 mg/L sulfide for both the 0.8 mg/L and 2.8 mg/L Fe treatments.
- IC25 and IC10 values were 2.19 (2.01-2.37) and 1.91 (1.61-2.26) mg/L sulfide for the 0.8 mg/L Fe treatment, respectively; and 5.21 (4.97-5.45) and 2.37 (2.34-2.40) mg/L sulfide for the 2.8 mg/L Fe treatment.

1.2.2. STUDY DAY 21

- Decreased emergence and increased median ET30, and the occurrence of phytotoxicity were observed in wild rice exposed to 100 mg B/L relative to the HS-1 control with 0.8 mg Fe/L.
- Sulfide exposure did not affect seed activation, seedling survival, root weight or length, free leaf number or weight, or induce phytotoxicity at 7.78 mg/L in either of the Fe treatments.
- Emergence (expressed as %) was the most sensitive endpoint, with respective SD 21 NOEC and LOEC values of 1.56 mg/L and 3.12 mg/L sulfide for the 0.8 mg/L Fe treatment; and 3.12 and 7.78 mg Fe/L for the 2.8 mg/L Fe treatment.
- SD 21 NOEC and LOEC values for both the percent emergence and ET30 were 1.56 mg/L and 3.12 mg/L sulfide for the 0.8 mg/L Fe treatment. SD 21 NOEC and LOEC values for percent emergence and ET30 were 3.12 and 7.78 sulfide, and 7.78 and >7.78 mg/L for the 2.8 mg/L Fe treatment, respectively.
- IC25 and IC10 values for emergence were 2.23 (2.13-2.33) and 1.55 (1.52-1.58) mg/L sulfide for the 0.8 mg/L Fe treatment, respectively; and 5.29 (5.13-5.45) and 2.38 (2.36-2.40) mg/L sulfide for the 2.8 mg/L Fe treatment.

• For shoot weight and length, SD 21 NOEC and LOEC values of 3.12 mg/L and 7.78 mg/L sulfide for the 0.8 and 2.8 mg/L Fe treatments; and 3.12 and 7.78 mg Fe/L for the 2.8 mg/L Fe treatment were observed.

- IC25 and IC10 values for shoot weight were 5.45 (5.40-5.50) and 4.52 (3.94-5.29) mg/L sulfide for the 0.8 mg/L Fe treatment, and 7.78 (7.60-8.00) and 4.91 (4.66-5.16) mg/L sulfide for the 2.8 mg/L Fe treatment.
- IC25 and IC10 values for shoot length were 7.70 (7.63-7.77) and 4.91 (4.42-5.40) mg/L sulfide for the 0.8 mg/L Fe treatment, and >7.78 and 5.57 (5.44-5.70) mg/L sulfide for the 2.8 mg/L Fe treatment.
- As observed in Fort et al. (1), the addition of 2.8 mg/L Fe reduced the toxicity (emergence) of sulfide, indicating that the concentration of oxygen in the headspace during mesocotyl emergence and early growth was not a significant factor in the sensitivity of wild rice to sulfide.

FEL IMAM01-00428

Table 1. Summary of Measurement Endpoints at SD 10¹

	Study Day 10 NOE	CC/LOEC (mg/L S ²⁻)	ChV (mg/L S ²⁻) ²	IC25 (mg/L S ²⁻) ³	IC10 (mg/L S ²⁻) ⁴	
Endpoint	0.8 mg Fe/L	2.8 mg Fe/L	0.8/2.8 mg Fe/L	0.8/2.8 mg Fe/L	0.8/2.8 mg Fe/L	
Activation	7.78/>7.78	7.78/>7.78	>7.78 / >7.78	>7.78/>7.8	>7.78/>7.8	
Emergence (%)	3.12/7.78	3.12/7.78	4.93/4.93	2.19 (2.01-2.37)/5.21 (4.97-5.45)	1.91 (1.61-2.26)/2.37 (2.34-2.40)	
Emergence (ET30) ⁵	1.56/3.12	3.12/7.78	2.21/4.93	/ [/]	/ [/]	
Survival	7.78/>7.78	7.78/>7.78	>7.78 / >7.78	>7.78/>7.8	>7.78/>7.8	
Phytotoxicity	7.78/>7.78	7.78/>7.78	>7.78 / >7.78	>7.78/>7.8	>7.78/>7.8	

¹ Nominal concentrations. Significance based on ANOVA or KW-ANOVA, p≤0.05. ² Chronic Value = geometric mean of NOEC and LOEC values. ³ 25% inhibitory concentration determined by linear interpolation.

⁴ 25% inhibitory concentration determined by linear interpolation.

⁵ Time to 30% emergence. Significance based on Mann-Whitney U test, p<0.05.

FEL IMAM01-00428

Table 2. Summary of Measurement Endpoints at SD 211

	Study Day 21 NOE	CC/LOEC (mg/L S ² ·)	ChV (mg/L S ²⁻) ²	IC25 (mg/L S ²⁻) ³	IC10 (mg/L S ²⁻) ⁴	
Endpoint	0.8 mg Fe/L	2.8 mg Fe/L	0.8/2.8 mg Fe/L	0.8/2.8 mg Fe/L	0.8/2.8 mg Fe/L	
Activation	7.78/>7.78	7.78/>7.78	>7.78 / >7.78	>7.78/>7.8	>7.78/>7.8	
Emergence (%)	1.56/3.12	3.12/7.78	2.21/4.93	2.23 (2.13-2.33)/5.29 (5.13-5.45)	1.55 (1.52-1.58)/2.38 (2.33-2.45)	
Emergence (ET30) ⁵	1.56/3.12	7.78/>7.78	2.21/>7.78	/ [/]	/ [/]	
Survival	7.78/>7.78	7.78/>7.78	>7.78 / >7.78	>7.78/>7.8	>7.78/>7.8	
Root Weight	7.78/>7.78	7.78/>7.78	7.78/>7.78	7.78/>7.78	7.78/>7.78	
Root Length	7.78/>7.78	7.78/>7.78	7.78/>7.78	7.78/>7.78	7.78/>7.78	
Shoot Weight	3.12/7.78	3.12/7.78	4.93/4.93	5.45 (5.40-5.50)/7.8 (7.6-8.0)	4.52 (3.94-5.29)/4.91 (4.66-5.16)	
Shoot Length	3.12/7.78	3.12/7.78	4.93/4.93	7.70 (7.63-7.77) />7.8	4.91 (4.42-5.40)/5.57(5.44-5.70)	
Leaf Number	7.78/>7.78	7.78/>7.78	>7.78 / >7.78	>7.78/>7.8	>7.78/>7.8	
Leaf Biomass	7.78/>7.78	7.78/>7.78	>7.78 / >7.78	>7.78/>7.8	>7.78/>7.8	
Phytotoxicity	7.78/>7.78	7.78/>7.78	>7.78 / >7.78	>7.78/>7.8	>7.78/>7.8	

¹ Nominal concentrations. Significance based on ANOVA or KW-ANOVA, p≤0.05. ² Chronic Value = geometric mean of NOEC and LOEC values. ³ 25% inhibitory concentration determined by linear interpolation.

⁴ 25% inhibitory concentration determined by linear interpolation.

⁵ Time to 30% emergence. Significance based on Mann-Whitney U test, p<0.05.

2. INTRODUCTION

FEL was retained by the Iron Mining Association of Minnesota (IMAM) to conduct a study of sulfide toxicity to wild rice (*Zizania palustris*) using a partially hypoxic hydroponic exposure. An assessment of the ability of iron to reduce sulfide toxicity to wild rice was also performed. The study will ultimately be used to assist in understanding the role of water-column based sulfate in the toxicity of sediment porewater sulfide to wild rice. The sulfide toxicity threshold was determined to facilitate a better understanding of the role of iron in altering sulfide toxicity, and will be used to support the efforts to re-evaluate the State of Minnesota's sulfate water quality standard of 10 mg/L for wild rice waters. The study was conducted in accordance with the specifications identified in FEL's Quality Assurance Management Plan (QAMP) (2), relevant facility standard operating procedures (SOPs), and Study Protocol No. IMAM01-2 prepared for FEL Study No. IMAM01-00428.

The primary objective of the study IMAM01-00428 was to evaluate of standardized headspace oxygen used in the hydroponic design to provide a definitive toxicity evaluation of sulfide to wild rice. The oxygen levels in the headspace were maintained at concentrations (~4 mg/L) that might commonly be found in natural overlaying waters during wild rice's emergence into the water column. Concentration-response data, including No and Lowest Observed Effect Concentrations (NOEC and LOEC), chronic values (ChV), and 25% inhibitory concentrations for the effects of sulfide on wild rice were determined.

3. STUDY PERSONNEL

- Mr. Kurt Anderson, Minnesota Power Sponsor Representative
- Dr. Douglas J. Fort, FEL Study Director
- Ms. Deanne Fort, FEL Manager, In-life study facility
- Mr. Kevin Todhunter, Technician
- Ms. Jennifer Staines, Technician
- Mr. Trenton Ging, Technician
- Ms. Elisabeth Alder, Technician

4. MATERIALS AND METHODS

4.1. DILUTION WATER

FEL used deionized water as the base water for this study. The deionized laboratory water was prepared by passing tap water through a four-filter system: a multimedia filter to remove suspended solids in the feed water; a 10 inch pre-treatment filter (5 μ m) to remove any additional solids; a 3.6 ft³ activated virgin carbon treatment filter to remove chlorine, ammonia, and higher molecular weight organics; 1.2 ft³ cation, 1.2 ft³ anion, and two 1.2 ft³ mixed bed ion exchange polishing filters in series to deionize the water. Both polishing filters were equipped with conductivity detection systems. Water exceeding 5 μ mhos/cm was signaled by a warning light. A 5 μ m solid filter completed the water treatment process and ensures no solids are released during deionization. Seven water quality

characteristics of the laboratory water were monitored twice per month: pH, dissolved oxygen (DO), conductivity, hardness, alkalinity, ammonia, and residual oxidants. Additional water quality characteristics measured at least annually were iodide, polyaromatic hydrocarbons (PAHs), pesticides, and metals. The dilution water was most recently analyzed for pesticides, PAHs, and metals in February 2017, and all water quality measurements cited above met the U.S. EPA and American Society for Testing and Materials (ASTM) criteria for aquatic toxicity test culture water. Deionized water was used to prepare the culture media (modified HS-1) in accordance with Table 3. Basic water chemistry parameters such as pH, hardness, and conductivity were documented on a representative sample of each test medium evaluated.

4.2. TEST SUBSTANCE

Hydrated sodium sulfide (Na₂S · 9 H₂O, 99.99% pure, SigmaAldrich, St. Louis, MO, lot number MKBP2953V, expiration 7/2021) and ferric chloride (FeCl₃, 98.00%, Merck KGaA, lot number 018400, expiration 11/2018) were used throughout the study.

4.3. TEST SYSTEM

The test system was wild rice (*Zizania palustris*). Given that wild rice seeds were obtained from natural wild rice lake located in Central Minnesota, care was taken to ensure that damaged or deformed seeds were not selected for the experiment. Seeds were sieved through a #5 (4 mm) sieve followed by a #10 (2 mm) sieve to separate quality seeds from debris. Visual inspection was also conducted as seeds were loaded into test systems to ensure damaged, discolored, or deformed seeds were not utilized.

4.3.1. ORIGIN AND HANDLING

Wild rice was hand-harvested from Minnesota. The ziplock bag containing wild rice seed was sent to FEL on November 2, 2017 by Kurt Anderson and received by FEL on November 3, 2017. Upon receipt the wild rice seed was unpacked and stored at 4°C in the dark.

4.4. EXPOSURE SYSTEM

Test solutions were provided using a static-renewal design in 10 L hydroponic tanks. The renewal frequency was daily with 0.7 volume exchanges/day. Daily cleaning of the tanks using a turkey baster was performed during media renewal to remove biomass that may have grown during the course of the study. This helped minimize bio-fouling and maintained water quality, including ammonia accumulation, in the tanks. Care was taken not to disturb the seeds and seedlings.

The hydroponic tanks were plastic aquaria (approximate measurements of 35 x 20 x 15 cm deep) equipped with baskets with inert mesh to support the seeds and seedlings. Each of the four tanks per treatment contained two 1-L baskets to house seeds and seedlings evaluated on study day (SD) 10. In total, eight baskets within the four replicates of wild rice seeds were evaluated per treatment and control.

Water temperature was maintained at 21°±2°C (day) and 12±2°C (night). Test solution pH was maintained between 6 and 7.5 s.u. in the control and treatment exposures. Within a given replicate,

variation in pH was ± 0.5 s.u. for each daily measurement at T0 and T24, and over the course of the study. This pH range was well within the range of conditions present where wild rice grows naturally. This range is also well within the range where the dynamic equilibrium between H₂S and HS⁻ shifts dramatically (~7.0), and these sulfur species are thought to differ in their toxicity. In order to maintain hypoxic (DO <2.0 mg/L) conditions within the hydroponic tanks, the HS-1 test medium was deoxygenated with N₂ gas, stored in a sealed carboy until used, and checked for oxygen concentration immediately prior to use. Each hydroponic tank was equipped with a 6-inch, small-bubble air stone to deliver a constant flow of N₂ gas to the tank and ensure hypoxic conditions were maintained. For hypoxic root growth and aerobic vegetative growth, the basket was placed in the hydroponic aquaria such that the seeds resided in the culture media approximately 1 cm below the air:media interface consistent with Fort et al. (1). The mesocotyl will develop in anaerobic conditions under this design. However, the emerged plant will grow in a controlled oxygen environmental chamber containing approximately 4 mg/L oxygen. Plastic wire mesh was placed inside the aquaria in such a manner as to provide a trellis to ensure the vegetative growth occurs above the hypoxic culture media. Sulfide-treated test solutions were prepared daily for use in renewal. Sulfide concentrations in the test solutions were measured prior to and following each daily media renewal using an ion-selective probe. The stability of sulfide in the culture media was aided by the N₂ gas balance in the media. Summaries of the test concentrations and study conditions are provided in Tables 4 and 5.

The diurnal temperature variation was controlled with gradual 2-hour ramped warm-up from 12±2°C maintained from 2000 to 0400 hours to 21°±2°C maintained from 0600 to 1800 hours with the corresponding 2-hour ramped cool down. During this period, the oxygen in the headspace was maintained at 4 mg/L. The combination of ramped diurnal temperature control and constant oxygen levels in the headspace allowed for control of oxygen levels in the hydroponic media to prevent oxygen saturation of the media.

4.4.1. EXPOSURE SYSTEM MAINTENANCE

Exposure tanks were siphoned on a daily basis to remove waste and any accumulated debris. Care was taken to minimize stress and trauma to the seeds/seedlings, especially during movement, cleaning of aquaria, and manipulation. Potentially stressful conditions and rapid changes in environmental conditions (light availability, temperature, pH, DO) were avoided.

4.5. WATER QUALITY ANALYSES

4.5.1. WATER (CULTURE) QUALITY ANALYSES

In each replicate tank, temperature and light intensity (lux) were measured daily throughout the 10-d study. DO (aqueous and headspace), pH, oxidation/reduction potential (ORP), and sulfide were measured twice daily (i.e., prior to and following solution renewal). DO, ORP, and sulfide measurements were conducted at the same water depth as seed exposure. Additionally, specific conductance (conductivity), total hardness, total alkalinity, total Fe, total residual oxidants, ammonianitrogen, sulfate, nitrate, and phosphate were measured in the media in a replicate of each treatment at SD 0, 7, 14, and 21 (conclusion) of the in-life phase.

4.6. TEST METHOD

The definitive wild rice sulfide toxicity study was conducted in a static-renewal format as prescribed by Fort et al. (1) and study ENVI01-00352 in an environmental chamber equipped for hydroponic studies (Table 5). Test solution (0.7 of total volume) was renewed daily. Each of the four replicates per solution contained two 1 L mesh-lined sub-baskets. The inert plastic mesh served as the medium on which the seeds were placed and served as a physical support required for hydroponic culture. Each basket contained 80 seeds (320 total per exposure condition), which was adequate to evaluate concentration-response relationships and assess significant differences in the treatments relative to their respective control (i.e., the HS-1 medium with a given iron concentration and no sulfide) (3,4). The study was performed in the dark to promote mesocotyl emergence and development.

Visual assessments only (i.e., no plants harvested) of the following endpoints (Table 6) were conducted at SD 10 following dark-phase exposure to evaluate:

- Activation expressed as % activation;
- Mesocotyl Emergence expressed as % emergence;
- Time to emergence expressed as the time to 30% emergence (ET30) at the replicate and treatment levels;
- Seedling survival expressed as % survival; and
- Phytotoxicity expressed as % affected.

All baskets were evaluated for the following endpoints, as well as, total plant biomass and signs of phytotoxicity during the free leaf stage at study conclusion (SD 21):

- Activation expressed a % activation;
- Mesocotyl Emergence expressed as % emergence;
- Time to emergence expressed as the time to 30% emergence (ET30) at the replicate and treatment levels;
- Seedling survival;
- Shoot (mesocotyl, coleoptile and primary leaf) weight expressed as dry weight, or dw;
- Shoot (mesocotyl, coleoptile and primary leaf) lengths;
- Root (seminal and rootlets) dw;
- Seminal Root length; and
- Free leaf number and biomass dw.

Since the frequency of mesocotyl emergence was not anticipated to be 100%, an acceptable frequency of mesocotyl emergence was determined from the MDP (ENVI01-00324 and 00351) and is listed in Table 7. In addition to the HS-1 (1:4) negative control and HS-1 controls containing the additional iron concentrations, a 100 mg B/L treatment in HS-1 (1:4) media was included as a positive control toxicant.

For all endpoint assessments (Table 6), plants were carefully removed at the conclusion of exposure using watch maker forceps and placed into Petri dishes for each replicate to evaluate the appropriate endpoints. Each set was digitally photographed, and length measurements of shoots and roots were recorded using digitization to the nearest mm. Weights (dw at 105°C) were recorded using an analytical balance capable of recording to the nearest 0.1 mg. The seminal root tissue was dissected from the seed as well as the coleoptile and primary leaf (shoot) material to specifically evaluate root tissue length (development).

4.7. BIOLOGICAL ENDPOINTS / OBSERVATIONS

4.7.1. DATA COLLECTION AND BIOLOGICAL ENDPOINTS

Test data and daily observations were recorded in the study records. Study records included study tracking sheets, test information sheets, study calendars identifying major events, study logs for recording detailed observations and comments, activation, daily mesocotyl emergence, seedling survival, and test termination data sheets. Endpoints selected for the present study were based on those required by OECD Test No. 208 (5). The endpoints assessed were activation, mesocotyl emergence, and seedling survival (all of which were measured daily), and signs of phytotoxicity (wilting, chlorosis, stem and root rot). Table 3 provides an overview of the endpoints and the corresponding observation time points.

4.7.1.1. ACTIVATION

Activation was defined as the absorption of water by the seed and seed coat disruption. All seeds were evaluated for activation using a magnification lens. Activation data were presented as a percentage of the total seeds per sub-basket, by replicate, and by culture media (treatment).

4.7.1.2. MESOCOTYL EMERGENCE

Mesocotyl emergence was defined as the appearance of plant tissue in the form of shoots or roots from the germinated seed. Emergence data were presented as a percentage of the total germinated seeds per pot, by replicate, and by culture media (treatment) and as the time required for mesocotyl emergence expressed as the time to 30% emergence (ET30) in each replicate and treatment.

4.7.1.3. SEEDLING SURVIVAL

Survival only applied to seeds with emerged plant tissue. Mortality was defined as loss of living emerged plant tissue. Survival data were presented as a percentage of the total seeds with emerged plant tissue per basket, by replicate, and by culture media (treatment).

4.7.1.4. PHYTOTOXICITY (**FREE LEAF PHASE**)

Signs of phytotoxicity, including chlorosis of the leaves, darkening of the plant tissue (rot), wilting (loss of turgor pressure), and deformity were recorded and expressed as a percent of the seeds with emerged plant tissue. Because this endpoint was somewhat subjective and is a descriptive endpoint, peer-review was used to verify results.

4.7.2. DAY 0 TEST INITIATION AND SAMPLE COLLECTION

Treatment tanks were randomly assigned to a position in the exposure system in order to account for possible variations in temperature and light intensity. On study day 0, seeds selected for study were randomly placed in each pot such that five seeds were added to each pot in accordance with a randomized design chart until each sub-basket contained 40 seeds. Samples of the test solutions were collected and analyzed for parameters described in Table 5. Tables 5 and 6 also provides an overview of the endpoints and the corresponding observation time points.

4.8. DATA ANALYSIS

All data from in-life portions of the study were tabulated in spreadsheets. The experimental unit for the present study was the replicate. For measurement endpoints (i.e., weights and lengths), replicate level data were based on the mean value for all plants measured in that replicate with the exception of the ET30 data sets which were based on median values. The statistical tests used to compare the culture media to the sulfide and B positive control differed depending on the data type and distribution for each measurement endpoint. For determination of concentration-based endpoints (NOEC and LOEC numerical endpoints), data that were expressed as a percent or proportion were transformed using the arcsine square root prior to further analysis. For measurement endpoints, comparisons between the treatments and designated controls were performed using one-way analysis of variance (ANOVA) or a nonparametric equivalent (KW-ANOVA). In all cases, sulfide treatments sharing the same iron concentration were compared against a control condition containing that same concentration of iron. When the initial test was statistically significant, *post hoc* tests were Dunnett's test for parametric test and Dunn's test for non-parametric tests. Treatment median ET30 values were determined by deriving the median of replicate ET30 values.

5. RESULTS

The statistical analyses and raw data are presented as Appendices A and B, respectively. An assessment of study performance is provided in Table 6. The discussion below refers to nominal sulfide concentrations unless otherwise noted (e.g., in the case of sulfide loss as a function of iron concentration).

5.1. SULFIDE TOXICITY

A summary of water quality measurements and study parameters for the negative controls (HS-1 with each Fe concentration), positive control (boron, as boric acid), and Fe-sulfide treatments is presented in Table 8. The pH was maintained at 6 to 7.5 s.u. in all replicates of controls and treatments, and ± 0.5 s.u. within a given replicate for each daily measurement over the course of the study. DO levels in the aquatic media were maintained at <1.0 mg/L in all treatments during the course of the study and at approximately 4 mg/L in the headspace chamber above the hydroponics chamber. Since the DO levels in the hydroponic media were maintained at <1 mg/L, no oxygen saturation occurred in the media. Hydroponic chamber temperature was maintained at $21^{\circ} \pm 2^{\circ}$ C (day) and $12 \pm 2^{\circ}$ C (night) in all replicates of control and treatments. A summary of sulfide concentrations based on time-weighted average values measured following test solution renewal (T0) and immediately prior to renewal (T24), along with an evaluation of 24-hour sulfide losses in each treatment is presented in Table 9. The mean sulfide concentration was calculated in accordance with OECD methods, and takes into account the variation in instantaneous concentration over time so that the area under the time-weighted mean is equal to the area under the concentration curve (6). Because the time intervals for all measurement periods were the same (i.e., 24 hours), the time-weighted mean values in Table 8 are equivalent to the arithmetic mean values for the newly prepared (post-renewal) and 24-hour old (pre-renewal) test solutions. Inter-replicate percent coefficient of variation (CV) within the control or a given sulfide exposure was ≤20% in both pre- and post-test solution renewal samples based on TWA concentrations. The inter-replicate CV for 24-hour sulfide loss based on the TWA concentration was ≤20%. Free sulfide loss between 24-hour renewals ranged from 17.0 to 27.1% in the 0.8 mg Fe/L treatments, and 36.7% to 55.5% in the 2.8 mg Fe/L treatments, respectively based on TWA measurements. The loss was presumably due in part to degradation, but primarily complexation with Fe. The results indicate that nominal and measured sulfide concentrations in freshly-prepared test solutions were very similar, but that increased Fe reduced free sulfide concentrations, and that this decrease was not necessarily a linear function of iron concentrations.

5.1.1. STUDY DAY 10

5.1.1.1. SULFIDE WITH 0.8 OR 2.8 mg Fe/L

The effects of sulfide exposure on developing wild rice in the presence of 0.8 mg Fe/L are presented in Tables 10-12. Overall, the following findings were noted:

• A boric acid positive control was performed with the 0.8 mg Fe/L treatment series. ≥Decreased emergence and increased median ET30, and the occurrence of phytotoxicity were observed in wild rice exposed to 100 mg B/L relative to the HS-1 control with 0.8 mg Fe/L.

• Sulfide exposure did not affect seed activation, seedling survival, or induce phytotoxicity at 7.78 mg/L in either of the Fe treatments.

- Emergence was the most sensitive endpoint, with respective SD 10 NOEC and LOEC values of 3.12 mg/L and 7.78 mg/L sulfide for both the 0.8 mg/L and 2.8 mg/L Fe treatments.
- IC25 and IC10 values were 2.19 (2.01-2.37) and 1.91 (1.61-2.26) mg/L sulfide for the 0.8 mg/L Fe treatment, respectively; and 5.21 (4.97-5.45) and 2.37 (2.34-2.40) mg/L sulfide for the 2.8 mg/L Fe treatment.

5.1.2. STUDY DAY 21

5.1.2.1. SULFIDE WITH 0.8 OR 2.8 mg FE/L

- A boric acid positive control was performed with the 0.8 mg Fe/L treatment series. Decreased emergence and increased median ET30, and the occurrence of phytotoxicity were observed in wild rice exposed to 100 mg B/L relative to the HS-1 control with 0.8 mg Fe/L.
- Sulfide exposure did not affect seed activation, seedling survival, root weight or length, free leaf number or weight, or induce phytotoxicity at 7.78 mg/L in either of the Fe treatments.
- Emergence (expressed as %) was the most sensitive endpoint, with respective SD 21 NOEC and LOEC values of 1.56 mg/L and 3.12 mg/L sulfide for the 0.8 mg/L Fe treatment; and 3.12 and 7.78 mg/L sulfide for the 2.8 mg/L Fe treatment.
- Emergence (expressed as ET30) was the similarly sensitive to emergence express as %, with respective SD 21 NOEC and LOEC values of 1.56 mg/L and 3.12 mg/L sulfide for the 0.8 mg/L Fe treatment, respectively; and 7.78 and >7.78 mg/L sulfide for the 2.8 mg/L Fe treatment, respectively.
- IC25 and IC10 values for emergence were 2.23 (2.13-2.33) and 1.55 (1.52-1.58) mg/L sulfide for the 0.8 mg/L Fe treatment, respectively; and 5.29 (5.13-5.45) and 2.38 (2.36-2.40) mg/L sulfide for the 2.8 mg/L Fe treatment.
- For shoot weight and length, SD 21 NOEC and LOEC values of 3.12 mg/L and 7.78 mg/L sulfide for the 0.8 and 2.8 mg/L Fe treatments; and 3.12 and 7.78 mg/L sulfide for the 2.8 mg/L Fe treatment were observed.
- IC25 and IC10 values for shoot weight were 5.45 (5.40-5.50) and 4.52 (3.94-5.29) mg/L sulfide for the 0.8 mg/L Fe treatment, and 7.78 (7.60-8.00) and 4.91 (4.66-5.16) mg/L sulfide for the 2.8 mg/L Fe treatment.
- IC25 and IC10 values for shoot length were 7.70 (7.63-7.77) and 4.91 (4.42-5.40) mg/L sulfide for the 0.8 mg/L Fe treatment, and >7.78 and 5.57 (5.44-5.70) mg/L sulfide for the 2.8 mg/L Fe treatment.
- As observed in Fort et al. (1), the addition of 2.8 mg/L Fe reduced the toxicity (emergence) of sulfide, indicating that the concentration of oxygen in the headspace during mesocotyl emergence and early growth was not a significant factor in the sensitivity of wild rice to sulfide.

6. PERFORMANCE CRITERIA AND VALIDITY

Results from the 00428 study met the performance criteria established (Table 6).

7. DISCUSSION

Results from this study indicate that for the most sensitive endpoint (mesocotyl emergence), exposure of developing wild rice to sulfide at concentrations ≥3.12 mg/L sulfide was toxic based on assessment of NOEC and LOEC values in the presence of 0.8 mg/L Fe. However, exposure of developing wild rice to sulfide at concentrations ≥7.8 mg/L was necessary to significantly reduce emergence in the presence of 2.8 mg Fe/L based on the mesocotyl emergence, and shoot weight and length. Overall, mesocotyl emergence was the most consistently sensitive endpoint in the study, while seed activation, seedling survival, root growth, leaf number and biomass, and phytotoxicity were the least sensitive endpoints. Based on measured sulfide concentrations, Fe reduced free sulfide concentrations in the 2.8 mg Fe/L treatment relative to the 0.8 mg Fe/L treatment. These observations, combined with differences in wild rice responses to sulfide across the different iron concentrations, demonstrate the ability of Fe to reduce sulfide toxicity to wild rice. Further, the concentration of oxygen in the headspace during mesocotyl emergence and early growth was not a significant factor in the sensitivity of wild rice to sulfide.

8. CONCLUSION

As observed in Fort et al. (1), the addition of 2.8 mg/L Fe reduced the toxicity (emergence) of sulfide indicating that the depth of hydroponic exposure during mesocotyl emergence and early growth was not a significant factor in the sensitivity of wild rice to sulfide. In the present study, a greater effect of Fe in reducing the effects of sulfide on mesocotyl emergence was noted at SD 10 compared to Fort et al. (1) based on NOEC and LOEC values, but the IC25 values were comparable. Results from these studies demonstrated the concentration of oxygen in the headspace during mesocotyl emergence and early growth was not a significant factor in the sensitivity of wild rice to sulfide, and complexation with Fe is the primary mitigating factor in terms of sulfide toxicity.

9. REFERENCES

- 1. Fort D.J., Todhunter, K., Fort, T.D., Mathis, M.B, Walker, R., Hansel, M., Hall S., Richards, R., and Anderson, K. 2017. Toxicity of sulfide to early life-stages of wild rice (*Zizania palustris*). Environ. Toxicol. Chem. 36(8):2217-2226.
- 2. FEL Quality Assurance Management Plan (QAMP), Fort Environmental Laboratories, Stillwater, OK, July 23, 2010 (current version).
- 3. Malvick, D.K. and Percich, J.A. (1993). Hydroponic culture of wild rice (*Zizania palustris* L.) and its application to studies of silicon nutrition and fungal brown spot disease. Can. J. Plant Sci. 73: 969-975.
- 4. Hoagland, D.R. and Arnon, DI (1950). The water-culture methods for growing plants without soil. Circular 347, University of California Agricultural Experiment Station, Berkley, CA.

5. OECD/OCDE. OECD Guideline for the Testing of Chemicals 208: Terrestrial plant test: Seedling emergence and seedling growth test. Organisation for Economic Co-operation and Development. July, 2006.

6. OECD, OECD Test Method 211, OECD Guidelines for Testing of Chemicals, 1998.

TABLES

Table 3. Modified Hoagland's Solution – HS-1 with 1:4 Ammonia: Nitrate

Primary Ingredient	Media HS-1 (1:4) mL Stock/L
1 M NH ₄ H2PO ₄	0.12
1 M NH ₄ NO ₃	0.70
1 M KNO ₃	1.10
1 M Ca(NO ₃) ₂	0.75
1M MgSO ₄	0.50
Micronutrients (Stock B)	
0.556 g H ₃ BO ₃	
9.163 g MnCl ₂ • 4 H2O	
0.219 g ZnSO ₄ • 7 H2O	1.00
0.077 g CuSO ₄ • 5 H2O	1.00
0.121 g Na ₂ MoO ₄ • 2H2O	
2.417 g FeCl ₃	

Table 4. Experimental Design¹

Total Fe Concentration (mg/L)		Sulfide (mg/L)							
0.8 (HS-1)	0	0.3	1.56	3.1	7.8				
2.8	0	0.3	1.56	3.1	7.8				

Page 22 of 222

¹ 100 mg B/L was also included with HS-1 only as a positive control.

Table 5. Experimental Conditions for Hydroponic Study – Definitive Phase

Test Substance		Sulfide				
Test System (species)		Zizania palustris (wild rice)				
Initial Stage		Seed, September 8, 2014seed lot from Little Round Lake (03-0302-00)				
Exposure Period		21-d (mesocotyl emergence phase in dark) and 21-d (free leaf phase)				
Selection Criteria		Seed uniformity, visual quality, and activation				
Exposure System		Static-renewal (daily) in controlled environmental chambers under				
1		anaerobic aquatic phase and aerobic vegetative phase				
Exposure Route		Water (hydroponics)				
Exchange frequency		Daily, 0.7 volumes/day				
Water Source		Deionized water				
Media		HS-1 with 1:4 ammonia:nitrate				
Seed Density		40 seeds/1 L sub-basket (320 seeds per treatment or control)				
Test Vessel		1 L basket equipped with mesh bottom supports for seeds				
Replication		1 L baskets equipped with mesh bottom supports for seeds				
		4 replicate tanks with each replicate containing a sub-divided 1 L				
Vessel Placement		basket. In total, there will be 40 seeds/sub-basket and 320				
		seeds/treatment at SD 0.				
Positive Control		Boric Acid (100 mg B/L)				
Test Performance Criter	ria (control)	See Table 4				
	Daily	Activation, mesocotyl emergence, seedling survival, and visual				
	Dany	inspection of development (emergence and normalcy of development)				
		Activation, mesocotyl emergence (%, time to emergence [TTE]				
	SD 10	expressed as 30% [ET30] if possible), survival, and signs of				
Test Endpoints		phytotoxicity				
		Activation, mesocotyl emergence (%, time to emergence [TTE]				
	Conclusion	expressed as 30% [ET30] if possible), survival, shoot and seminal root				
	Concrasion	length and weight, leaf number, second and free leaf biomass, and signs				
		of phytotoxicity				
Feeding	Nutrient/Micronutrients	HS-1 modified with 1:4 ammonia:nitrate				
- · · · · · · · · · · · · · · · · · · ·	Frequency	Daily, 0.7 volumes renewed				
Lighting	Photoperiod	Dark through SD 10, then 16 h light:8 h dark				
	Intensity (post SD 10)	$5,000 \pm 1,000$ lux (measured daily at water surface)				
Temperature		In all replicates, daily, $21^{\circ} \pm 2^{\circ}C$ (day), and nightly, $12 \pm 2^{\circ}C$ (night)				
pH, ORP, DO, and sulfi		2x per day in all replicates prior to and following renewal				
	, hardness, ammonia, total Fe,	Initiation, Day 7, Day 14, and Day 21(conclusion) of study in a				
nitrate, sulfate, phospha	te, total residual oxidants	representative test replicate of each treatment.				

Table 6. Observation Time Points for Primary Endpoints

Apical/Molecular/Biochemical			
Endpoints:		SD 10	SD 21 Free-
		Emergence	Leaf Phase
	Daily	Phase	
Activation	•		
Survival	•		
Emergence	•		
Shoot ¹ weight			•
Shoot length			•
Root ² weight			•
Root length			•
Leaf number			•
Leaf biomass			•
Total plant biomass			•
Phytotoxicity		•	•

Table 7. General Test Performance Criteria

	Criterion	Acceptance (value, if
Criterion		appropriate)
Control activation	95%	√(100%)
Control magazetyl	≥30% on SD 21	$\sqrt{44.4}$ and 45.6% in the
Control mesocotyl		0.8 and 2.8 mg/L Fe
emergence		controls)
Control survival	≥90%	√(100%)
Positive control	$\geq \! \! 80\%$	√(100%)
(BA) phytotoxicity		
DO	< 2.0 mg/L for the aquatic media and approximately 4 mg/L in	$\sqrt{\text{(within range)}}$
DO	the headspace above the chamber	
	6-7.5 in all replicates of control and treatments and ± 0.5 s.u.	$\sqrt{\text{(within range)}}$
pН	within a given replicate for each daily measurement point at T0	
	and T24 and over the course of the study in a given replicate	,
Water temperature	$21^{\circ} \pm 2^{\circ}$ C (day), and nightly, $12 \pm 2^{\circ}$ C (night) in all replicates of	$\sqrt{\text{(within range)}}$
water temperature	control and treatments	
	Inter-replicate CV ≤20% within each control or treatment	$\sqrt{\text{(within range)}}$
Sulfide	condition at pre- or post-renewal time points based on TWA	
concentration	concentration; and ≤30% 24-hour sulfide loss in 0.8 mg Fe/L set	
	(control) based on TWA concentration	

¹Includes mesocotyl, coleoptile, and primary leaf measured combined for weight and individually by structure for length.

²Seminal roots and rootlets for weight and seminal root for length.

 Table 8.
 Water Quality Summary

		mp C)			IT		n	0		01	RP
	(*)	() 	T. 14 T. 4	pH		DO Headspace Aquatic		notic	OI	KP	
	AM	PM	Light Intensity (lux)	Pre-Renew	Post-Renew	Pre	Post	Pre	Post	Pre-Renew	Post-Renew
	7 1 1 1	1 141	(Iux)	11c-Renew	HS-1 (1:4) N			110	1 050	11c-Renew	1 ost-Kenew
MIN	22.2	12.4	4210	6.4	6.5	3.8	3.8	0.6	0.5	53.0	53.2
MAX	22.5	12.9	4870	7.2	7.1	4.1	4.1	0.9	0.9	57.7	58.4
MEAN	22.3	12.7	4530	6.9	7.0	4.0	4.0	0.8	0.8	55.1	55.2
SEM	0.01	0.01	34	0.01	0.01	0.01	0.01	0.01	0.01	0.10	0.11
					100 mg/L Bori	c Acid Tre	atment			1	
MIN	22.2	12.3	4110	6.5	6.5	3.8	3.8	0.7	0.7	52.9	52.3
MAX	22.5	12.8	4990	7.1	7.0	4.1	4.1	0.9	0.9	56.7	56.9
MEAN	22.3	12.7	4597	6.9	7.0	4.0	4.0	0.8	0.8	54.5	54.9
SEM	0.01	0.01	43	0.01	0.01	0.01	0.01	0.01	0.01	0.08	0.11
					0.3 mg/L Sul	fide 0.8 mg	/L Fe				
MIN	22.2	12.4	4230	6.6	6.7	3.8	3.8	0.7	0.6	129.8	130.0
MAX	22.4	12.8	4930	7.5	7.2	4.1	4.1	0.9	0.9	139.4	140.6
MEAN	22.3	12.7	4496	6.9	6.9	3.9	4.0	0.8	0.8	132.1	132.6
SEM	0.01	0.01	29.12	0.01	0.01	0.01	0.01	0.01	0.01	0.25	0.25
					1.56 mg/L Sul	fide 0.8 mg	g/L Fe				
MIN	22.2	12.3	4130	6.6	6.6	3.8	3.8	0.7	0.7	133.2	133.8
MAX	22.4	12.8	4840	7.0	7.0	4.2	4.1	0.9	0.9	144.6	145.6
MEAN	22.3	12.7	4445	6.9	6.9	3.9	4.0	0.8	0.8	139.0	139.0
SEM	0.01	0.01	21.73	0.01	0.01	0.01	0.01	0.01	0.01	0.20	0.20
	3.12 mg/L Sulfide 0.8 mg/L Fe						_				
MIN	22.2	12.3	4090	6.7	6.6	3.8	3.8	0.7	0.7	133.2	130.2
MAX	22.4	12.8	4830	7.2	7.2	4.1	4.1	0.9	0.9	150.2	150.7
MEAN	22.3	12.7	4430	6.8	6.9	3.9	4.0	0.8	0.8	142.7	142.1
SEM	0.01	0.01	21.21	0.01	0.01	0.01	0.01	0.01	0.01	0.26	0.36

 Table 8.
 Water Quality Summary (continued)

	Te:	mp		n	Н		De	1		0	RP
		C)	Light Intensity	P		Head	dspace		ıatic	0.	
	AM	PM	(lux)	Pre-Renew	Post-Renew	Pre	Post	Pre	Post	Pre-Renew	Post-Renew
			. , ,		7.78 mg/L Su	ılfide 0.8 n	ng/L Fe			•	•
MIN	22.2	12.4	4000	6.5	6.5	3.8	3.8	0.7	0.7	137.4	134.2
MAX	22.4	12.8	4710	7.4	7.3	4.1	4.1	0.9	0.9	156.2	157.3
MEAN	22.3	12.7	4389	6.8	6.8	3.9	4.0	0.8	0.8	150.6	151.2
SEM	0.01	0.01	24.56	0.02	0.02	0.01	0.01	0.01	0.01	0.31	0.33
				H	S-1 (1:4) Nutrie	ent Media	2.8 mg/L Fe				
MIN	22.2	12.4	4160	6.4	6.5	3.8	3.7	0.7	0.6	50.3	51.3
MAX	22.4	12.8	4930	7.1	7.0	4.1	4.1	0.9	0.9	58.4	57.5
MEAN	22.3	12.7	4480	6.9	6.9	4.0	4.0	0.8	0.8	55.0	55.2
SEM	0.01	0.01	24	0.01	0.02	0.01	0.01	0.01	0.01	0.14	0.11
					0.3 mg/L Su	lfide 2.8 m					
MIN	22.2	12.4	4210	6.6	6.7	3.8	3.7	0.6	0.6	130.2	130.0
MAX	22.4	12.8	4930	7.0	7.0	4.1	4.1	0.9	0.9	138.7	141.3
MEAN	22.3	12.7	4460	6.8	6.9	3.9	3.9	0.8	0.8	132.3	132.7
SEM	0.01	0.01	18.98	0.01	0.01	0.01	0.01	0.01	0.01	0.19	0.24
	1.56 mg/L Sulfide 2.8 mg/L Fe										
MIN	22.2	12.3	4210	6.3	6.5	3.8	3.7	0.7	0.7	130.4	130.1
MAX	22.4	12.9	4830	7.0	7.0	4.1	4.4	0.9	0.9	144.7	145.1
MEAN	22.3	12.7	4528	6.8	6.8	4.0	3.9	0.8	0.8	138.8	139.0
SEM	0.01	0.01	21.54	0.01	0.01	0.01	0.01	0.01	0.01	0.24	0.26
					3.12 mg/L Su		ng/L Fe				
MIN	22.2	12.4	4250	6.5	6.6	3.8	3.8	0.6	0.6	133.9	134.2
MAX	22.4	12.8	4860	7.0	7.0	4.1	4.1	0.9	0.9	149.1	149.5
MEAN	22.3	12.7	4558	6.8	6.8	3.9	3.9	0.8	0.8	142.4	142.7
SEM	0.01	0.01	29.00	0.01	0.01	0.01	0.01	0.01	0.01	0.26	0.32
	7.78 mg/L Sulfide 2.8 mg/L Fe										
MIN	22.2	12.4	4140	6.4	6.5	3.8	3.8	0.7	0.7	143.6	133.1
MAX	22.4	12.8	4990	6.9	7.0	4.1	4.1	0.9	0.9	155.7	157.8
MEAN	22.3	12.7	4601	6.7	6.7	4.0	4.0	0.8	0.8	150.7	151.0
SEM	0.01	0.01	41.04	0.01	0.01	0.01	0.01	0.01	0.01	0.22	0.41

Summary of Measured Sulfide Concentrations Table 9.

		Time-Weighted Average ¹ (mg/L)						
Treatment	Nominal Concentration (µM/mg/L)	Post- Renewal (T0) ²	CV (%)	Pre- Renewal (T24) ³	CV (%)	Loss (%)		
HS-1	0.0	< 0.01	-	< 0.01	-	ı		
100 mg B/L/wild rice	0.0	<0.01	-	< 0.01	-	-		
0.3 mg/L S ²⁻	0.3	0.38	10.13	0.30	4.59	21.61		
1.56 mg/L S ²⁻	1.56	1.79	11.57	1.44	5.04	19.65		
3.12 mg/L S ²⁻	3.12	3.33	11.44	2.42	9.32	27.12		
7.78 mg/L S^{2-}	7.8	7.94	7.01	6.59	5.02	17.00		
HS-1 2.8 mg/L Fe	0.0	< 0.01	-	< 0.01	-	1		
0.3 mg/L S ²⁻ 2.8 mg/L Fe	0.3	0.38	13.88	0.22	9.56	40.53		
1.56 mg/L S ² - 2.8 mg/L Fe	1.56	1.71	12.78	1.08	8.65	36.65		
3.12 mg/L S ² - 2.8 mg/L Fe	3.12	3.39	14.55	1.51	8.68	55.48		
7.78 mg/L S ² - 2.8 mg/L Fe	7.8	7.71	12.21	4.25	8.06	44.93		

Analysis based on OECD method 211 (11).
 Time-weighted based on analysis of fresh test solutions.
 Time-weighted based on analysis of aged test solutions at T24 prior to renewal of fresh test solutions.

Table 10. Study Day 10 Endpoint Summary

					Per R	eplicate				
		Activated	Activation	Mesocotyl Emerged	Mesocotyl Emergence	Seedling Survival	Survival	Mean Free Leaf	Phyto Abno Appea	rmal
Treatment	Rep	Seed (n)	(%)	(n)	(%)	(n)	(%)	(n)	(n)	(%)
	A	40	100.0	15	37.5	15.0	100.0	0	0	0.0
	В	40	100.0	14	35.0	14.0	100.0	0	0	0.0
HS-1 ¹	С	40	100.0	13	32.5	13.0	100.0	0	0	0.0
113-1	D	40	100.0	15	37.5	15.0	100.0	0	0	0.0
	Mean:	40	100	14.3	35.6	14.3	100.0	0	0	0.0
	SEM:	0.0	0.0	0.48	1.20	0.48	0.0	0.0	0.0	0.0
	A	40	100.0	3	7.5	3.0	100.0	0	3	100.0
	В	40	100.0	3	7.5	3.0	100.0	0	3	100.0
100 mg/L	С	40	100.0	3	7.5	3.0 100.0 0 3 3.0 100.0 0 3 3.0 100.0 0 3 3.0 100.0 0 3 3.0 100 0 3	3	100.0		
BA	D	40	100.0	3	7.5	3.0	100.0	0	3	100.0
	Mean:	40	100	3.0	7.5 ²	3.0	100	0	3	1003
	SEM:	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0	0.0
	A	40	100.0	14	35.0	14.0	100.0	0	0	0.0
	В	40	100.0	12	30.0	12.0	100.0	Ō	0	0.0
0.3 mg/L	С	40	100.0	13	32.5	13.0	100.0	0	0	0.0
S^{2} .	D	40	100.0	14	35.0	14.0	100.0	0	0	0.0
	Mean:	40	100	13.3	33.1	13.3	100	0	0.0	0
	SEM:	0.0	0.0	0.48	1.20	0.48	0.0	0.0	0.0	0.0
	A	40	100.0	13	32.5	13.0	100.0	0	0	0.0
	В	40	100.0	13	32.5	13.0	100.0	0	0	0.0
1.56 mg/L	C	40	100.0	15	37.5	15.0	100.0	0	0	0.0
S ^{2.}	D	40	100.0	12	30.0	12.0	100.0	0	0	0.0
	Mean:	40	100	13.3	33.1	13.3	100	0	0.0	0
	SEM:	0.0	0.0	0.63	1.57	0.63	0.0	0.0	0.0	0.0

¹Contains 0.8 mg Fe/L. Statistical comparisons made to HS-1 with 0.8, 2.8 mg Fe/L controls depending on treatment set analyzed to hold the nominal Fe constant during analysis.

²Significantly less than 0.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

³Significantly greater than 0.8 mg/L Fe HS-1 control (Mann-Whitney U test, p=0.029).

Table 10. Study Day 10 Endpoint Summary (Continued)

					Per R	eplicate				
		Activated	Activation	Mesocotyl Emerged	Mesocotyl Emergence	Seedling Survival	Survival	Mean Free Leaf	Phyto Abno Appea	rmal
Treatment	Rep	Seed (n)	(%)	(n)	(%)	(n)	(%)	(n)	(n)	(%)
	A	40	100.0	9	22.5	9.0	100.0	0	0	0.0
	В	40	100.0	9	22.5	9.0	100.0	0	0	0.0
3.12 mg/L	С	40	100.0	7	17.5	7.0	100.0	0	0	0.0
S ²⁻	D	40	100.0	8	20.0	8.0	100.0	0	0	0.0
	Mean:	40	100	8.3	20.6	8.3	100	0	0.0	0
	SEM:	0.0	0.0	0.48	1.20	0.48	0.0	0.0	0.00	0.0
	A	40	100.0	3	7.5	3.0	100.0	0	0	0.0
	В	40	100.0	3	7.5	3.0	100.0	0	0	0.0
7.78 mg/L S ²⁻	C	40	100.0	4	10.0	4.0	100.0	0	0	0.0
	D	40	100.0	3	7.5	3.0	100.0	0	0	0.0
	Mean:	40	100	3.3	8.11	3.3	100	0	0.0	0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	0.0	0.00	0.0
	A	40	100.0	13	32.5	13.0	100.0	0	0	0
	В	40	100.0	14	35.0	14.0	100.0	0	0	0
HS-1 2.8 mg/L	C	40	100.0	14	35.0	14.0	100.0	0	0	0
Fe	D	40	100.0	15	37.5	15.0	100.0	0	0	0
	Mean:	40	100	14.0	35.0	14.0	100	0	0.0	0
	SEM:	0.0	0.0	0.41	1.02	0.41	0.0	0.0	0.00	0.0
	A	40	100.0	16	40.0	16.0	100.0	0	0	0
0.3 mg/L	В	40	100.0	15	37.5	15.0	100.0	0	0	0
S ²⁻	C	40	100.0	15	37.5	15.0	100.0	0	0	0
2.8 mg/L Fe	D	40	100.0	13	32.5	13.0	100.0	0	0	0
re	Mean:	40	100	14.8	36.9	14.8	100	0	0.0	0
	SEM:	0.0	0.0	0.63	1.57	0.63	0.0	0.0	0.00	0.0

 $^{^1}Significantly$ less than 0.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

Table 10. Study Day 10 Endpoint Summary (Continued)

					Per Re	plicate				
		Activated	Activation	Mesocotyl Emerged	Mesocotyl Emergence	Seedling Survival	Survival	Mean Free Leaf	Phytotox: Abnormal Appearance	
Treatment	Rep	Seed (n)	(%)	(n)	(%)	(n)	(%)	(n)	(n)	(%)
	A	40	100.0	13	32.5	13.0	100.0	0	0	0.0
1.56 mg/L	В	40	100.0	13	32.5	13.0	100.0	0	0	0.0
S ²⁻	С	40	100.0	14	35.0	14.0	100.0	0	0	0.0
2.8 mg/L	D	40	100.0	12	30.0	12.0	100.0	0	0	0.0
Fe	Mean:	40	100	13.0	32.5	13.0	100	0	0.0	0
	SEM:	0.0	0.0	0.41	1.02	0.41	0.0	0.0	0.00	0.0
	A1	40	100.0	12	30.0	12.0	100.0	0	0	0.0
3.12 mg/L	A2	40	100.0	13	32.5	13.0	100.0	0	0	0.0
S ² ·	B1	40	100.0	12	30.0	12.0	100.0	0	0	0.0
2.8 mg/L	B2	40	100.0	13	32.5	13.0	100.0	0	0	0.0
Fe	Mean:	40	100	12.5	31.3	12.5	100	0	0	0
	SEM:	0.0	0.0	0.29	0.72	0.29	0.0	0.0	0.00	0.0
	A	40	100.0	8	20.0	8.0	100.0	0	0	0.0
7.78 mg/L	В	40	100.0	9	22.5	9.0	100.0	$\overline{0}$	0	0.0
S^{2-}	С	40	100.0	7	17.5	7.0	100.0	0	0	0.0
2.8 mg/L Fe	D	40	100.0	8	20.0	8.0	100.0	0	0	0.0
re	Mean:	40	100	8.0	20.01	8.0	100	0	0	0
	SEM:	0.0	0.0	0.41	1.02	0.41	0.0	0.0	0.00	0.0

Page 30 of 222

 $^{^1}Significantly$ less than 2.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

Table 11. Study Day 21 Endpoint Summary

								Per Replica	ate						
Treatment	Rep	Activated Seed (n)	Activation (%)	Mesocotyl Emerged (n)	Mesocotyl Emergence (%)	Seedling Survival (n)	Survival	Mean Root Length (mm)	Mean Root Weight	Mean Shoot Length (mm)	Mean Shoot Weight	Mean Dried Leaf Weight (g)	Mean Free Leaf (n)	Abno	otox: ormal arance (%)
270002202	A	40	100.0	18	45.0	18.0	100.0	34.2	0.0009	35.7	0.0038	0.0012	0.7	0	0.0
	В	40	100.0	18	45.0	18.0	100.0	31.7	0.0008	36.8	0.0045	0.0018	0.8	0	0.0
HS-1 ¹	С	40	100.0	16	40.0	16.0	100.0	33.6	0.0007	39.6	0.0034	0.0021	1.3	0	0.0
HS-1	D	40	100.0	19	47.5	19.0	100.0	32.3	0.0008	38.5	0.0033	0.0015	0.9	0	0.0
	Mean:	40	100	17.8	44.4	17.8	100.0	32.9	0.0008	37.7	0.0037	0.0017	0.9	0	0.0
	SEM:	0.0	0.0	0.63	1.57	0.63	0.0	0.58	0.0000	0.86	0.0003	0.0002	0.1	0.0	0.0
	A	40	100.0	5	12.5	5.0	100.0	28.5	0.0005	19.9	0.0016	0.0015	0.8	5	100.0
	В	40	100.0	5	12.5	5.0	100.0	40.1	0.0006	16.6	0.0013	0.0011	0.2	5	100.0
100 mg/L	С	40	100.0	4	10.0	4.0	100.0	23.6	0.0016	19.7	0.0018	0.0015	0.3	4	100.0
BA	D	40	100.0	3	7.5	3.0	100.0	33.5	0.0006	21.6	0.0030	0.0007	0.7	3	100.0
	Mean:	40	100	4.3	10.62	4.3	100	31.4	0.0008	19.5 ³	0.0019	0.0012	0.5	4.25	1004
	SEM:	0.0	0.0	0.48	1.20	0.48	0.0	3.53	0.0002	1.02	0.0004	0.0002	0.1	0.5	0.0
	A	40	100.0	17	42.5	17.0	100.0	33.4	0.0010	28.4	0.0033	0.0036	0.2	0	0.0
	В	40	100.0	18	45.0	18.0	100.0	41.0	0.0011	45.9	0.0033	0.0025	0.4	0	0.0
0.3 mg/L	С	40	100.0	18	45.0	18.0	100.0	44.0	0.0012	29.1	0.0031	0.0014	1.2	0	0.0
S^{2} .	D	40	100.0	18	45.0	18.0	100.0	48.2	0.0009	35.8	0.0040	0.0009	1.2	0	0.0
	Mean:	40	100	17.8	44.4	17.8	100	41.6	0.0010	34.8	0.0034	0.0021	0.8	0.0	0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	3.12	0.0001	4.07	0.0002	0.0006	0.3	0.00	0.0

¹Contains 0.8 mg Fe/L. Statistical comparisons made to HS-1 with 0.8, 2.8 mg Fe/L controls depending on treatment set analyzed to hold the nominal Fe constant during analysis.

²Significantly less than 0.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

³Significantly less than 0.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

 $^{^4}$ Significantly greater than 0.8 mg/L Fe HS-1 control (Mann-Whitney U test, p=0.029).

Table 11. Study Day 21 Endpoint Summary (Continued)

								Per Replic	ate						
Treatment	Rep	Activated Seed (n)	Activation (%)	Mesocotyl Emerged (n)	Mesocotyl Emergence	Seedling Survival (n)	Survival	Mean Root Length (mm)	Mean Root Weight	Mean Shoot Length (mm)	Mean Shoot Weight (g)	Mean Dried Leaf Weight (g)	Mean Free Leaf (n)	Phyt Abno Appea (n)	rmal
Treatment	A	40	100.0	17	42.5	17.0	100.0	41.9	0.0007	52.0	0.0043	0.0018	0.9	0	0.0
	В	40	100.0	16	40.0	16.0	100.0	58.7	0.0007	42.0	0.0061	0.0041	0.3	0	0.0
1.56 mg/L	C	40	100.0	16	40.0	16.0	100.0	56.7	0.0007	58.2	0.0053	0.0017	0.4	0	0.0
S ²⁻	D	40	100.0	15	37.5	15.0	100.0	46.3	0.0007	56.1	0.0063	0.0011	0.5	0	0.0
	Mean:	40	100	16.0	40.0	16.0	100	50.9	0.0007	52.1	0.0055	0.0022	0.5	0.0	0
	SEM:	0.0	0.0	0.41	1.02	0.41	0.0	4.06	0.0000	3.59	0.0004	0.0007	0.1	0.00	0.0
	A	40	100.0	11	27.5	11.0	100.0	39.6	0.0007	51.1	0.0027	0.0025	0.5	0	0.0
	В	40	100.0	11	27.5	11.0	100.0	41.5	0.0009	54.4	0.0049	0.0029	0.4	0	0.0
3.12 mg/L	С	40	100.0	9	22.5	9.0	100.0	42.4	0.0010	46.3	0.0032	0.0018	0.7	0	0.0
S ²⁻	D	40	100.0	9	22.5	9.0	100.0	53.2	0.0009	45.7	0.0051	0.0008	0.2	0	0.0
	Mean:	40	100	10.0	25.01	10.0	100	44.2	0.0009	49.4	0.0040	0.0020	0.4	0.0	0
	SEM:	0.0	0.0	0.58	1.44	0.58	0.0	3.06	0.0001	2.06	0.0006	0.0005	0.1	0.00	0.0
	A	40	100.0	5	12.5	5.0	100.0	40.5	0.0007	21.3	0.0019	0.0016	0.2	0	0.0
	В	40	100.0	4	10.0	4.0	100.0	29.4	0.0010	26.6	0.0027	0.0007	0.3	0	0.0
7.78 mg/L S ²⁻	С	40	100.0	5	12.5	5.0	100.0	49.8	0.0008	35.9	0.0013	0.0019	0.6	0	0.0
3	D	40	100.0	5	12.5	5.0	100.0	34.8	0.0007	20.3	0.0021	0.0018	0.2	0	0.0
	Mean:	40	100	4.8	11.9 ¹	4.8	100	38.6	0.0008	26.0 ²	0.0020^{3}	0.0015	0.3	0.0	0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	4.37	0.0001	3.58	0.0003	0.0003	0.1	0.00	0.0

 $^{^{1}}$ Significantly less than 0.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

²Significantly less than 0.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

³Significantly less than 0.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

Table 11. Study Day 21 Endpoint Summary (Continued)

								Per Replica	ate						
Treatment	Rep	Activated Seed (n)	Activation (%)	Mesocotyl Emerged (n)	Mesocotyl Emergence (%)	Seedling Survival (n)	Survival	Mean Root Length (mm)	Mean Root Weight	Mean Shoot Length (mm)	Mean Shoot Weight (g)	Mean Dried Leaf Weight (g)	Mean Free Leaf (n)		otox: ormal orance (%)
	A	40	100.0	18	45.0	18.0	100.0	40.9	0.0009	60.4	0.0052	0.0006	0.6	0	0
	В	40	100.0	19	47.5	19.0	100.0	35.4	0.0008	49.2	0.0041	0.0015	0.6	0	0
HS-1 2.8 mg/L	С	40	100.0	18	45.0	18.0	100.0	46.0	0.0010	54.3	0.0038	0.0017	0.3	0	0
Fe	D	40	100.0	18	45.0	18.0	100.0	36.9	0.0009	39.7	0.0051	0.0027	0.3	0	0
	Mean:	40	100	18.3	45.6	18.3	100	39.8	0.0009	50.9	0.0046	0.0016	0.5	0.0	0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	2.36	0.0000	4.38	0.0003	0.0004	0.1	0.00	0.0
	A	40	100.0	19	47.5	19.0	100.0	40.3	0.0010	60.3	0.0038	0.0032	0.2	0	0
0.3 mg/L	В	40	100.0	18	45.0	18.0	100.0	47.6	0.0009	40.5	0.0046	0.0020	0.5	0	0
S ²⁻	С	40	100.0	19	47.5	19.0	100.0	57.2	0.0009	39.6	0.0035	0.0009	1.3	0	0
2.8 mg/L Fe	D	40	100.0	18	45.0	18.0	100.0	46.2	0.0009	38.5	0.0030	0.0012	1.1	0	0
re	Mean:	40	100	18.5	46.3	18.5	100	47.8	0.0009	44.7	0.0037	0.0018	0.8	0.0	0
	SEM:	0.0	0.0	0.29	0.72	0.29	0.0	3.50	0.0000	5.21	0.0003	0.0005	0.3	0.00	0.0
	A	40	100.0	17	42.5	17.0	100.0	42.8	0.0008	62.4	0.0041	0.0019	1.0	0	0.0
1.56 mg/L	В	40	100.0	17	42.5	17.0	100.0	42.8	0.0008	60.3	0.0055	0.0048	0.6	0	0.0
S ²⁻	С	40	100.0	18	45.0	18.0	100.0	54.7	0.0008	38.8	0.0029	0.0024	1.4	0	0.0
2.8 mg/L Fe	D	40	100.0	17	42.5	17.0	100.0	45.1	0.0008	49.9	0.0037	0.0016	2.0	0	0.0
re	Mean:	40	100	17.3	43.1	17.3	100	46.4	0.0008	52.9	0.0040	0.0027	1.2	0.0	0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	2.82	0.0000	5.42	0.0005	0.0007	0.3	0.00	0.0

Table 11. Study Day 21 Endpoint Summary (Continued)

			Per Replicate												
Treatment	Rep	Activated Seed (n)	Activation (%)	Mesocotyl Emerged (n)	Mesocotyl Emergence (%)	Seedling Survival (n)	Survival (%)	Mean Root Length (mm)	Mean Root Weight (g)	Mean Shoot Length (mm)	Mean Shoot Weight (g)	Mean Dried Leaf Weight (g)	Mean Free Leaf (n)	Abno	otox: ormal arance (%)
	A	40	100.0	16	40.0	16.0	100.0	50.4	0.0008	50.7	0.0040	0.0031	0.2	0	0.0
3.12 mg/L	В	40	100.0	15	37.5	15.0	100.0	39.8	0.0008	50.8	0.0050	0.0023	0.4	0	0.0
S ² -	С	40	100.0	16	40.0	16.0	100.0	54.6	0.0009	42.1	0.0052	0.0012	0.6	0	0.0
2.8 mg/L Fe	D	40	100.0	16	40.0	16.0	100.0	44.6	0.0008	44.9	0.0048	0.0028	0.7	0	0.0
re	Mean:	40	100	15.8	39.4	15.8	100	47.3	0.0008	47.1	0.0048	0.0023	0.5	0	0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	3.25	0.0000	2.16	0.0003	0.0004	0.1	0.00	0.0
	A	40	100.0	10	25.0	10.0	100.0	34.2	0.0007	37.1	0.0033	0.0014	0.4	0	0.0
7.78 mg/L	В	40	100.0	12	30.0	12.0	100.0	34.8	0.0008	47.8	0.0035	0.0035	0.1	0	0.0
S ² -	С	40	100.0	10	25.0	10.0	100.0	36.6	0.0008	41.9	0.0030	0.0009	0.3	0	0.0
2.8 mg/L Fe	D	40	100.0	10	25.0	10.0	100.0	32.4	0.0006	32.6	0.0030	-	0.0	0	0.0
re	Mean:	40	100	10.5	26.31	10.5	100	34.5	0.0007	39.92	0.00323	0.0019	0.2	0	0
	SEM:	0.0	0.0	0.50	1.25	0.50	0.0	0.87	0.0001	3.26	0.0001	0.0008	0.1	0.00	0.0

 $^{^{1}}$ Significantly less than 0.8 mg/L Fe HS-1 control (KW-ANOVA, Dunnett's test, p<0.05).

²Significantly less than 0.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

³Significantly less than 0.8 mg/L Fe HS-1 control (ANOVA, Dunnett's test, p<0.05).

Table 12. Median Emergence Time (MET) in Wild Rice on SD21¹

	Median Emergence Time (d)												
Replicate	HS-1 100 mg/L BA 0.3 mg/L S ² 0.8 mg/L Fe 1.56 mg/L S ² 0.8 mg/L Fe 0.8 mg/L												
Rep A	9	>21	9	10	>21	>21	10	9	9	9	>21		
Rep B	10	>21	10	10	>21	>21	9	9	10	10	>21		
Rep C	9	>21	10	9	>21	>21	9	9	9	10	20		
Rep D	9	>21	9	10	>21	>21	9	10	10	10	>21		
Median	9	>212	9.5	10	>21³	>214	9	9	9.5	10	>215		

¹Based on time (in days) required to achieve 30% emergence.

²Significantly greater than 0.8 mg/L Fe HS-1 control (Mann-Whitney U test, p=0.029).

³Significantly greater than 0.8 mg/L Fe HS-1 control (Mann-Whitney U test, p=0.029).

⁴Significantly greater than 0.8 mg/L Fe HS-1 control (Mann-Whitney U test, p=0.029).

 $^{^5}$ Significantly greater than 0.8 mg/L Fe HS-1 control (t-test, p<0.001).

Appendix A. Raw Data and Statistical Analyses

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Page_

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux 핊

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

吊

Page

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux 吊

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

핊

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

핊

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Page_

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Page_

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

Temp Range = AM19-23 PM 10-14 Light Intensity = 0 through SD10 then 4000-6000 lux

NI	1AM01-00	728 - Endp	IMAM01-00428 - Endpoint Data Summary	mmary				Œ	FEL
					Per Replicate	je.			
		Activated		Mesocotyl	Mesocotyl Emerg-	Seedling		Phytotox: Abnormal	tox:
T. C.	2	Seed	Activation	Emerged	ence	Survival	Survival	Appearance	ance /º/
ובמוובווי	4	9	100.0	15	37.5	15.0	100.0	0	0.0
	В	4	100.0	14	35.0	14.0	100.0	0	0.0
00 (7:7) 7 (3:1	U	40	100.0	13	32.5	13.0	100.0	0	0.0
10.0 (+: 1) 1-0.0	Δ	4	100.0	15	37.5	15.0	100.0	0	0.0
	Mean:		100	14.3	35.6	14.3	100.0	0	0.0
	SEM:	0.0	0.0	0.48	1.20	0.48	0.0	0.0	0.0
	٧	40	100.0	14	35.0	14.0	100.0	0	0.0
	В	40	100.0	12	30.0	12.0	100.0	0	0.0
0.0 mg/l	O	40	100.0	13	32.5	13.0	100.0	0	0.0
O. O. D. T. BOLL CONTINUE O. O. T. BOLL CO.	۵	40	100.0	14	35.0	14.0	100.0	0	0.0
	Mean:	40	100	13.3	33.1	13.3	100	0.0	0
	SEM:	0.0	0.0	0.48	1.20	0.48	0.0	00'0	0.0
	¥	40	100.0	13	32.5	13.0	100.0	0	0.0
	В	40	100.0	13	32.5	13.0	100.0	0	0.0
た。 の の の の の の の の の の の の の	S	40	100.0	15	37.5	15.0	100.0	0	0.0
		40	100.0	12	30.0	12.0	100.0	0	0.0
	Mean:	40	100	13.3	33.1	13.3	100	0	0
	SEM:	0.0	0.0	0.63	1.57	0.63	0.0	0.0	0.0
	٧	40	100.0	6	22.5	0.6	100.0	0	0.0
	В	40	100.0	6	22.5	9.0	100.0	0	0.0
3.12 mg/ Sulfide 0.8 mg/ Ee	O	40	100.0	2	17.5	7.0	100.0	0	0.0
		40	100.0	8	20.0	8.0	100.0	0	0.0
	Mean:	40	100	8.3	20.6	8.3	100	0.0	0
	SEM:	0.0	0.0	0.48	1.20	0.48	0.0	00.0	0.0

Page **59** of **222**

AI	IAM01-00)428 - Endp	IMAM01-00428 - Endpoint Data Summary	ımmary				Œ	FEL
					Per Replicate	9			
		Activated	;	Mesocotyl	Mesocotyl Emerg-	Seedling		Phytotox: Abnormal	tox: mal
Treatment	Rep	Seed (n)	Activation (%)	Emerged (n)	ence (%)	Survival (n)	Survival (%)	Appearance (n) (%)	ance (%)
	٧	40	100.0	3	7.5	3.0	100.0	0	0.0
	В	40	100.0	3	5.7	3.0	100.0	0	0.0
7 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0	40	100.0	4	10.0	4.0	100.0	0	0.0
	Q	40	100.0	3	5.7	3.0	100.0	0	0.0
	Mean:	40	100	3.3	8.1	3.3	100.0	0	0.0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	0.0	0.0
	Α	40	100.0	13	32.5	13.0	100.0	0	0.0
	В	40	100.0	14	35.0	14.0	100.0	0	0.0
2	0	40	100.0	14	35.0	14.0	100.0	0	0.0
o J/B 0.7 (+:-) -0.1		40	100.0	15	37.5	15.0	100.0	0	0.0
	Mean:	40	100	14.0	35.0	14.0	100	0.0	0
	SEM:	0.0	0.0	0.41	1.02	0.41	0.0	0.00	0.0
	٧	40	100.0	16	40.0	16.0	100.0	0	0.0
	В	40	100.0	15	37.5	15.0	100.0	0	0.0
0.3 mg// Sulfide 2.8 mg// Fe	S	40	100.0	15	37.5	15.0	100.0	0	0.0
	D	40	100.0	13	32.5	13.0	100.0	0	0.0
	Mean:	40	100	14.8	36.9	14.8	100	0	0
	SEM:	0.0	0.0	0.63	1.57	0.63	0.0	0.0	0.0
	٧	40	100.0	13	32.5	13.0	100.0	0	0.0
	В	40	100.0	13	32.5	13.0	100.0	0	0.0
1 56 mg/ Sulfide 2 8 mg/ Fe	S	40	100.0	14	35.0	14.0	100.0	0	0.0
		40	100.0	12	30.0	12.0	100.0	0	0.0
	Mean:	40	100	13.0	32.5	13.0	100	0.0	0
	SEM:	0.0	0.0	0.41	1.02	0.41	0.0	0.00	0.0

MI	1AM01-00	0428 - Endp	IMAM01-00428 - Endpoint Data Summary	ımmary				ш.	用
					Per Replicate	æ			
					Mesocotyl			Phytotox:	tox:
		Activated		Mesocotyl	Emerg-	Seedling		Abnorma	mal
Treatment	Rep	Seed (n)	Activation (%)	Emerged (n)	ence (%)	Survival (n)	Survival (%)	Appearance (n) (%)	(%)
	٧	40	100.0	12	30.0	12.0	100.0	0	0.0
	В	40	100.0	13	32.5	13.0	100.0	0	0.0
2 4 2 mg/l Sulfider 2 8 mg/l	O	40	100.0	12	30.0	12.0	100.0	0	0.0
3. 12 mg/L Samae z.o mg/L re	Q	40	100.0	13	32.5	13.0	100.0	0	0.0
	Mean:	40	100	12.5	31.3	12.5	100.0	0	0.0
	SEM:	0.0	0.0	0.29	0.72	0.29	0.0	0.0	0.0
	٧	40	100.0	8	20.0	8.0	100.0	0	0.0
	В	40	100.0	6	22.5	9.0	100.0	0	0.0
7 80 ma/l Sulfide 2 8 ma/l Ee	O	40	100.0	7	17.5	7.0	100.0	0	0.0
0.1 DE 0.1 DE 00.7		40	100.0	8	20.0	8.0	100.0	0	0.0
	Mean:	40	100	8.0	20.0	8.0	100	0.0	0
	SEM:	0.0	0.0	0.41	1.02	0.41	0.0	0.00	0.0
	٧	40	100.0	3	7.5	3.0	100.0	3	100.0
	В	40	100.0	3	7.5	3.0	100.0	3	100.0
HS-1 (1:4) 100 mg/l BA	O	40	100.0	3	7.5	3.0	100.0	3	100.0
	D	40	100.0	3	7.5	3.0	100.0	3	100.0
	Mean:	40	100	3.0	7.5	3.0	100	3	100
	SEM:	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0

Page **61** of **222**

吊

					Median	ι Emergence Time	ime (d)				
	HS-1	100 mg/L BA	0.3 mg/L S ²⁻ 0.8 mg/L Fe	1.56 mg/L S ²⁻ 0.8 mg/L Fe	3.12 mg/L S ²⁻ 0.8 mg/L Fe	7.8 mg/L S ²⁻ 0.8 mg/L Fe	HS-1 2.8 mg/L Fe	0.3 mg/L S ²⁻ 2.8 mg/L Fe	1.56 mg/L S ²⁻ 2.8 mg/L Fe	3.12 mg/L S ²⁻ 2.8 mg/L Fe	7.8 mg/L S ²⁻ 2.8 mg/L Fe
Rep A	6	>10	6	10	>10	<10	10	6	6	6	> 10
Rep B	10	>10	10	10	>10	<10	6	6	10	10	> 10
Rep C	6	>10	10	6	>10	<10	6	6	6	10	> 10
Rep D	6	>10	6	10	>10	<10	6	10	10	10	> 10
Median	6	>10	9.5	10	>10	>10	6	6	9.5	10	>10
MHS	0.3	0.0	٥٤	0.3	0.0	0.0	٠,	0.3	0.3	0.3	0

Takedown Data

Client/Project-WO No: SQME01-00428

				ľ	ľ	ľ					Ī	
							Leaf	Shoot	Root	Phytotoxicity	Free	
4	Tech	Treatment	Rep	Seed	Shoot	Root	Biomass	Length	Length	(Y or N)	Leaf	Comments
Dale	IIIIII		2	<u> </u>	0.0042	0.0012	0.0008	18 631148	32 703	Z	30	
			∢	2	0.0035	0.0011	0.0013	23.671756	62.1470	Z	2.0	
			⋖	б	0.0052	0.0014	0.0012	17.325894	10.6475	Z	3.0	
			٧	4	0.0044	0.0012	2000'0	20.590865	69:6369	Z	3.0	
			⋖	2	0.0064	0.0008	0.0022	19.512056	16.4322	Z	2.0	
			⋖	9	0.0038	0.0008		18.288254	5.1602	Z	0.0	
			⋖	7	0.0030	0.0010		18.116374	43.4460	Z	0.0	
			٧	8	0.0053	0.0014		30.090278	67.8163	Z	0.0	
			٧	6	0.0020	0.0011		36.877029	37.6544	Z	0.0	
		HS-1 (1:4)	٧	10	0.0031	0.0008		35.488192	83.5627	Z	0.0	
		0.8 mg/L Fe	٧	11	0.0026	0.0014		36.717222	10.6087	Z	0.0	
			٧	12	0.0030	0.0007		47.816158	39.1929	Z	0.0	
			٧	13	0.0038	6000.0		32.794515	9.8883	Z	0.0	
			٧	14	0.0063	0.0004		37.731344	8.6197	Ν	0.0	
			A	15	0.0025	0.0005		111.30976	17.5064	Z	0.0	
			Α	16	0.0037	0.0003		69.408123	39.663584	Z	0.0	
			Α	17	0.0026	0.0002		47.161184	25.675709	Z	0.0	
			Α	18	0.0033	0.0003		21.760438	44.593407	Z	0.0	
			A	19								
			٧	20								
Averages					0.0038	6000.0	0.0012	35.7384	34.2197		0.7	
			В	1	0.0034	0.0005	0.0005	36.603938	45.1285	Z	2.0	
			В	2	0.0085	0.0005	0.0024	25.562819	30.2918	Z	2.0	
			В	3	0.0055	0.0004	0.0022	28.554384	23.2522	Z	3.0	
			В	4	0.0060	600000	0.0019	33.720866	33.7631	Z	3.0	
			В	5	0.0035	0.0007	0.0029	21.993042	25.9961	Z	2.0	
			В	9	0.0075	0.0006	0.0010	18.757691	62.5091	Z	3.0	
			В	7	0.0088	0.0006		30.011186	27.5592	Z	0.0	
			Ш	80	0.0055	0.0004		29.03412	24.1910	Z	0.0	
			В	თ	0.0051	0.0008		19.16154	42.2733	Z	0.0	
		HS-1 (1:4)	В	19	0.0034	0.0007		72.503676	19.7650	Z	0.0	

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			8.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					1.3	3.0	3.0	3.0	3.0	3.0	2.0	0.0	
z	Z	Z	Z	Z	Z	Z	Z				Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z						Z	Z	Z	Z	Z	Z	Z	
22.2069	12.5801	33.4022	37.2525	32.0955	45.2064	8.9921	44.2985			31.7091	17.8803	36.8468	18.9056	49.3550	35.0009	16.3938	32.3665	30.8475	31.0659	20.4229	62.5592	27.5410	44.9625	62.9783	28.9653	21.66131					33.6096	51.1505	15.2474	48.6635	45.0622	50.0983	16.0500	46.2350	
39.1344	48.2392	36.1383	36.4765	59.2719	71.9233	27.7357	27.8859			36.8171	30.998899	15.915404	19.6011	20.235455	23.527622	34.826765	18.296627	92.678863	22.61763	28.738878	31.977843	35.547568	41.76152	112.4216	38.2465	66.146429					39.5962	23.5776	25.9259	28.5475	35.7506	41.8594	33.4614	18.5513	
										0.0018	0.0017	0.0018	0.0039	0.0035	0.0021	0.0008	0.0009														0.0021	0.0024	0.0010	0.0012	0.0018	0.0022	0.0004		
0.0023	0.0010	0.0010	0.0012	0.0011	0.0009	0.0007	0.0003			0.008	6000.0	0.0009	0.0012	0.0010	0.0007	0.0003	0.0004	2000'0	0.0008	6000.0	9000.0	0.0004	0.0003	0.0007	0.0010	0.0011					2000.0	0.0013	0.0005	0.0002	0.0003	0.0004	9000.0	0.0011	
0.0031	0.0010	0.0028	0.0043	0.0023	0.0031	0.0043	0.0022			0.0045	0.0042	0.0046	0.0072	0.0040	0.0032	0.0043	0.0048	0.0037	0.0032	0.0014	0.0051	0.0021	0.0017	0.0018	0.0016	0.0012					0.0034	0.0050	0.0028	0.0035	0.0024	0.0032	0.0053	0.0060	
11	12	13	14	15	16	17	18	19	20		-	2	င	7	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19	50		1	2	3	4	2	9		
В	В	Ш	В	Ш	Ш	Ш	В	Ш	Ш		ပ	ပ	ပ	ပ	ပ	O	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	O	O	O	O	O									
0.8 mg/L Fe																				HS-1 (1:4)	0.8 mg/L Fe																		
										Averages																					Averages								

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		6.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.2	3.0	2.0	3.0	0.0	0.0	0.0
Z	Z	Z	Z	z	Z	Z	Z	Z	Z	Z			Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z					Z	Z	Z	Z	Z	Z
28.7825	11.2814	46.3011	12.3266	49.8044	39.9166	68.5369	20.8007	18.1430		9.232		32.2520	26.4567	18.5679	13.9288	ı	37.490							34.395	34.001	42.755	53.972	37.149	8.131				33.3683	37.6163	29.4128	43.8019	36.8591	87.	23.304
51.3432	15.4026	32.1128	61.9679	66.8497	62.6956	26.7018	49.9874	82.6348	47.343	12.849			22.0473	15.9247	31.0462	24.3100	24.145	30.973	19.067	15.747	25.457	29.747	20.490	18.463	58.621	16.118	46.174	48.047	36.129				28.3827	24.2269		l		24.4885	59.326
												0.0015	0.0036																				0.0036	0.0026	0.0035	0.0014			
0.0016	0.0008	0.0007	0.0014	0.0008	0.0019	0.0003	0.0002	0.0003	0.0005	0.0007		0.0008	0.0010	0.0005	0.0003	0.0009	0.0011	0.0028	0.0020	0.0013	0.0007	0.0008	2000.0	0.0007	0.0008	0.0014	0.0008	0.0007	0.0005				0.0010	0.0015	0.0015	0.0011	0.0012	0.0015	0.0013
0.0066	0.0032	0.0022	0.0035	0.0033	0.0029	0.0021	0.0022	0.0026	0.0030	0.0015		0.0033	0.0063	0.0051	0.0010	0.0048	0.0059	0.0046	0.0044	0.0033	0.0037	0.0025	0.0021	0.0016	0.0011	0.0012	0.0038	0.0026	0.0021				0.0033	0.0068	0.0047	0.0051	0.0043	0.0039	0.0021
6	10	11	12	13	14	15	16	17	18	19	20		1	2	3	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20		٦	2	က	4	9	9
		Ω	Ω	△				□					∢	⋖	∀	∢	٧	٧	٨	∢	∢	∢	٧	∢	∢	٧	⋖	٧	٧	A	٨	٧		В	М	Ш	М	В	Δ
	HS-1 (1:4)	0.8 mg/L Fe	i																			$0.3 \mathrm{mg/L} \mathrm{S}^{2}$	0.8 mg/L Fe)															
												Averages																					Averages						

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.4	3.0	3.0	3.0	2.0	2.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			1.2	3.0	3.0	2.0	2.0
Z	Z	z	z	Z	z	z	z	Z	Z	z	Z				Z	z	z	z	Z	Z	z	Z	Z	Z	z	Z	Z	Z	Z	z	z	z				Z	z	Z	Z
58.376	44.154										6.823			41.0288	24.5796	32.1989	56.7046	_							l			39.635				9.376			43.9962	36.9060	35.9312	20.0252	23.4675
21.537	27.310	82.965	18.958	44.203	80.676	34.012	53.403	25.828	20.611	163.858	23.663			45.9341	62.0759	26.7018	30.2105	20.5156	21.804	17.434	38.442	23.008	49.156	35.771	26.074	24.770	21.659	30.846	27.266	29.060	22.577	16.418			29.0994	28.9328	46.8287	76.8191	16.1183
														0.0025	6000'0	0.0019	0.0026	0.0010	0.0018	0.0018	9000.0	0.0003													0.0014	0.0028	2000.0	9000'0	0.0010
0.0016	0.0007	0.0004	6000.0	0.0010	0.0012	9000:0	0.0008	0.0004	0.0005	0.0010	0.0018			0.0011	0.0019	0.0023	0.0018	0.0016	0.0013	6000.0	0.0015	0.0010	0.0017	0.0019	0.0003	9000.0	0.0004	0.0004	0.0007	0.0005	0.0009	0.0016			0.0012	0.0010	0.0008	0.0005	6000.0
0.0018	0.0024	0.0028	0.0016	0.0009	0.0018	0.0012	0.0011	0.0043	0.0056	0.0042	0.0040			0.0033	0.0039	0.0047	0.0031	0.0028	0.0026	0.0015	0.0011	0.0016	0.0018	0.0022	0.0024	0.0023	0.0029	0.0048	0.0051	0.0054	0.0046	0.0029			0.0031	0.0073	0.0066	0.0078	0.0061
7	8	6	10	11	12	13	14	15	16	17	18	19	20		-	2	က	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20		_	2	3	4
Ω	В	Ш	В	М	Ш	Ш	Ш	Ш	В	Ш	Ш	В	В		0	O	U	O	ပ	ပ	O	ပ	O	ပ	ပ	ပ	ပ	ပ	O	O	U	O	O	ပ			□		
			0.3 ma/L S ²⁻	0.8 mg/L Fe)																			0.3 mg/L S ²⁻	0.8 mg/L Fe)													
														Averages																					Averages	ı			

	[c	С	0	C	С	0	0	С	С	С	0	С	С			2	С	С	С	0	0	С	c	С	0	С		[c	[C	[c	С	С	0				6	0
3.0	2.0	3.0	3.0	0.0	0.0).O	0.0	0.0	0.0	0.0	0.0	0.0	0.0			1.2	2.0	2.0	3.0	2.0	2.0	2.0	2.0	1.0).O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				6.0	0.6
Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z				Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z					N
52.3389	69	20.685									71.440	56.424	17.525			48.1737	25.6455	42.8760	23.1702	41.4951	84.8609	47						41.905				64.140	28.402					C878 11
18.3536	26.2225	33.952	18.888	25.638	16.958	33.726	42.954	51.329	55.008	72.671	17.767	13.191	49.379			35.8186	25.3832	36.1834	29.2339	31.0371	28.6729	42.9336	69.515	31.968	132.540	45.630	37.771	47.595	23.334	124.893	78.496	39.270	58.956				51.9653	20 6220
0.0004	0.0005	0.0004	9000'0													6000'0	0.0043	6000'0	0.0012	6000'0	0.0020	0.0039	6000'0	0.0011	0.0008												0.0018	0.000
0.0011	0.0009	0.0007	6000.0	9000.0	0.0012	0.0010	0.0009	0.0014	0.0012	9000.0	0.0004	0.0008	0.0007			6000'0	0.0017	0.0009	0.0007	9000.0	9000.0	0.0008	0.0007	9000.0	9000.0	0.0005	0.0002	0.0007	0.0003	0.0007	0.0004	0.0008	0.0007				0.0007	0.000
0.0055	0.0043	0.0030	0.0018	0.0025	0.0027	0.0013	0.0012	0.0029	0.0033	0.0041	0.0043	0.0037	0.0039			0.0040	0.0077	0.0035	0.0051	0.0044	0.0064	0.0038	0.0030	0.0053	0.0020	0.0031	0.0076	0.0030	0.0038	0.0063	0.0025	0.0037	0.0026				0.0043	58000
2	9	2	∞	6	10	11	12	13	14	15	16	17	18	19	20		7	2	က	4	Ŋ	9	2	8	ნ	10	11	12	13	14	15	16	17	18	19	20		,
				Δ										□	□		∢	∢	∢	∢	∢	∢	⋖	⋖	∢	∢	⋖	۷	∢	⋖	∢	∢	∢	∢	∢	∢		α
					0.3 mg/L S ²⁻	0.8 mg/L Fe)																			1.56 mg/L S²-	0.8 mg/L Fe	•										
																Averages																					Averages	

0.0006 0.0007 27.0735 0.0300 N 0.0008 27.4735 22.2838 N 0.0006 27.4735 22.2838 N 0.0007 25.27 23.992 N 0.0007 45.023 48.287 N 0.0007 37.848 17.909 N 0.0001 37.848 17.909 N 0.0007 38.884 42.682 N 0.0007 73.657 82.724 N 0.0007 73.657 82.724 N 0.0007 72.6451 78.602 31.358 0.0007 72.6451 78.766 N 0.0007 72.652 83.70 88.42 0.0007 73.325 33.4098 N 0.0008 0.0014 27.327 29.8129 N 0.0008 0.0014 27.329 18.28129 N 0.0006 0.0014 27.325 33.4098 N 0.0006 0.0013				c	0800	3000	0.000	22 8050	52 0008	2	7	
1.66 mg/L S² B 5 0.0075 0.0006 13.017 49.5607 0.0006 0.0006 13.017 49.5607 0.0006 0.0006 0.0007 0.0			n m	4	0.0035	0.0008	0.0	20 9386	60.9930	Z	0:0	
1.56 mg/L S²			m	5	0.0075	0.0008		27.4735		Z	0.0	
1.56 mg/L S²			М	9	0.0088	9000.0		31.9010		Z	0.0	
1.56 mg/L S ²			М	7	0.0055	9000.0		22.5177			0.0	
1.56 mg/L S ²			ш	ω	0.0071	0.0007		25.227			0.0	
1.66 mg/L S ²			m	6	0.0058	6000.0		45.023			0.0	
O 8 mg/L Fe		1.56 mg/L S ²⁻	ш	10	0.0057	0.0010		37.848			0.0	
B 12 0.0004 0.0005 33.854 82.724 N B 14 0.0076 0.0003 79 602 31536 N B 15 0.0045 0.0007 79 602 31536 N B 15 0.0045 0.0007 72 6451 78.766 N B 16 0.0040 0.0007 58.370 56.397 N B 18 19 0.0041 0.0007 0.0041 42.0177 58.7436 N C 1 0.0044 0.0002 0.0033 34.5777 29.8129 N C 2 0.0058 0.0008 0.0011 27.3235 33.5391 N C 2 0.0058 0.0006 0.0011 27.3235 33.5391 N C 2 0.0058 0.0006 0.0011 27.3235 33.5391 N C 5 0.0059 0.0006 0.0012 31.4537 15.0099 N C 6 0.0059 0.0006 0.0012 31.4531 N C 7 0.0041 0.0007 0.0012 31.4531 N C 8 0.0047 0.0016 0.0012 31.4531 N C 17 0.0047 0.0016 0.0012 31.4531 N C 18 0.0047 0.0016 0.0012 31.4531 N C 19 0.0047 0.0016 0.0016 56.237 12.438 N C 10 0.0041 0.0006 0.0017 31.7262 N C 11 0.0034 0.0006 0.0017 31.7264 N C 12 0.0047 0.0006 0.0017 31.438 0.346 N C 14 0.0034 0.0006 0.0017 31.438 0.346 N C 16 0.0007 0.0006 0.0007 0.0017 31.438 C 17 0.0007 0.0006 0.0007 0.0017 31.438 C 18 0.0007 0.0006 0.0007 0.0017 31.438 C 18 0.0007 0.0008 0.0007 0.0008 0.0007 C 18 0.0007 0.0008 0.0007 0.0007 C 18 0.0007 0.0008 0.0007 0.0008 0.0007 C 18 0.0007 0.0008 0.0007 0.0007 0.0007 C 18 0.0007 0.0008 0.0007 0.0007 0.0007 C 19 0.0007 0.0008 0.0007 0.0007 0.0007 C 19 0.0007 0.0008 0.0007 0.0007 0.0		0.8 mg/L Fe	m	11	0.0062	0.0011		47.835		Z	0.0	
B 13 0.0070 0.0006 736 884 42 662 N B 14 0.0057 0.0006 75 662 78 766 N B 15 0.0046 0.0007 75 66.397 N B 16 0.0040 0.0007 56.397 N B 17 0.0041 0.0007 0.0033 345777 28 6129 N C 2 0.0068 0.0002 0.0033 345777 28 6129 N C 3 0.0068 0.0007 0.0012 77 3256 33 5391 N C 4 0.0049 0.0007 0.0013 74 770 33 4096 N C 5 0.0068 0.0006 0.0011 74 329 12 5349 N C 7 0.0096 0.0007 0.0013 74 370 18 233 N C 1 0.0041 0.0010 0.0013 77 326 95 0545 N C 1 0.0041 0.0010 0.0012 11 8 6919 N C 1 0.0041 0.0010 0.0013 77 326 95 0545 N C 1 0.0041 0.0010 0.005 0.005 0.005 C 14 0.0054 0.0005 0.005 0.005 0.005 C 14 0.0054 0.0005 0.005 0.005 0.005 C 14 0.0054 0.0005 0.005 0.005 0.005 C 15 0.0077 0.0006 0.005 0.005 0.005 C 16 0.0007 0.0006 0.0007 0.005 0.005 C 17 0.0050 0.0005 0.005 0.005 C 18 0.0007 0.0006 0.005 0.005 0.005 C 19 0.0007 0.0006 0.0007 0.005 0.005 C 16 0.0007 0.0006 0.0007 0.005 0.005 C 17 0.0007 0.0006 0.0007 0.0007 C 18 0.0007 0.0007 0.0007 0.0007 C 18 0.0007 0.0007 0.0007 0.0007 C 19 0.0007 0.0007 0.0007 0.0007 C 19 0.0007 0.0007 0.0007 0.0007 0.0007 C 19 0.0007 0.0007 0.0007 0.0007 0.0007 C 19 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 C 18 0.0007		ò	М	12	0.0064	0.0005		23.657		Z	0.0	
B 14 0.0067 0.0006 79 602 31.556 N B 15 0.0045 0.0007 1.55.451 78.766 N B 16 0.0040 0.0007 56.397 N B 17 0.0061 0.0007 0.0041 42.0177 58.745 N B 20 0.0061 0.0007 0.0041 42.0177 58.745 N B 20 0.0068 0.0003 34.577 29.8129 N C 2 0.0068 0.0003 0.0012 31.4770 33.4086 N C 3 0.0088 0.0006 0.0012 31.4770 33.4088 N C 4 0.0049 0.0007 0.0012 31.4770 33.4088 N C 5 0.0087 0.0007 0.0012 31.4770 31.4088 N C 7 0.0098 0.0005 0.0012 31.4770 31.4088 N C 7 0.0098 0.0005 0.0012 31.4088 N C 8 0.0099 0.0005 0.0012 31.4088 N C 9 0.0047 0.0013 31.408 S6.448 N C 10 0.0047 0.0005 0.0005 0.0005 C 11 0.0034 0.0005 0.0005 0.0005 C 14 0.0036 0.0005 0.0005 0.0005 C 15 0.0077 0.0006 0.0007 0.0007 C 16 0.0007 0.0006 0.0007 0.0006 C 17 0.0008 0.0007 0.0006 0.0007 C 18 0.0007 0.0006 0.0007 0.0006 C 18 0.0007 0.0006 0.0007 0.0007 C 18 0.0007 0.0006 0.0007 0.0007 C 18 0.0007 0.0006 0.0007 0.0007 C 18 0.0007 0.0007 0.0007 0.0007 C 18 0.0007 0.0008 0.0007 0.0007 C 18 0.0007 0.0007 0.0007 0.0007 0.0007 C 18 0.0007 0.0007 0.0007 0.0007 C 18 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 C 18 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 C 18 0.0007			М	13	0.0070	0.0003		38.884		Z	0.0	
B 15 0.0045 0.0007 125,451 78,766 N B 16 0.0040 0.0007 58,370 56,397 N B 18 18 18 18 B 19 0.0041 0.0007 0.0041 42,0177 58,7435 N C 1 0.0044 0.0002 0.0033 34,577 29,8129 N C 2 0.0068 0.0007 0.0041 27,3235 33,399 N C 2 0.0088 0.0006 0.0011 27,3235 33,399 N C 2 0.0088 0.0006 0.0011 27,3335 33,498 N C 3 0.0088 0.0006 0.0011 27,3335 33,498 N C 4 0.0049 0.0006 0.0013 34,677 33,498 N C 5 0.0087 0.0008 0.0012 31,4087 N C 6 0.0060 0.0008 0.0013 37,786 45,419 N C 7 0.0034 0.0005 0.0013 37,786 45,419 N C 10 0.0041 0.0005 0.0005 0.0006 C 11 0.0034 0.0005 0.0006 0.0007 C 12 0.0047 0.0006 0.0007 0.0008 C 13 0.0037 0.0008 0.0007 0.0008 C 14 0.0058 0.0007 0.0008 0.0007 C 15 0.0007 0.0008 0.0007 0.0008 C 16 0.0020 0.0009 0.0009 C 17 0.0031 0.0006 0.0007 0.0008 C 18 0.0007 0.0008 0.0007 0.0008 0.0007 C 19 0.0007 0.0008 0.0007 0.0008 0.0007 C 10 0.0007 0.0008 0.0007 0.0008 0.0007 0.0008 0.0007 C 10 0.0007 0.0008 0.0007 0.00			m	14	0.0057	9000.0		79.602		Z	0.0	
B 16 00040 0.0007 58.370 56.397 N			М	15	0.0045	2000.0		125.451		Z	0.0	
B 17 C 10			Μ	16	0.0040	2000.0		58.370		Z	0.0	
B 18			М	17								
B 19 0.0061 0.0001 42.0177 58.7435 N			М	18								
B 20 0.0061 0.0007 0.00041 42.0177 58.7435			m	19								
0.0061 0.0004 0.0003 34.5777 29.8129 N			М	20								
C 1 0.0044 0.0002 0.0033 34.5777 29.8129 N O O O O O O O O O O O O O O O O O O	ages				0.0061	0.0007	0.0041	42.0177	58.7435		0.3	
C 2 0.0058 0.0001 31.4770 33.498 N C 3 0.0088 0.0006 0.0012 31.4770 33.498 N C 4 0.0049 0.0006 0.0013 74.0873 15.0099 N C 5 0.0087 0.0005 0.0001 27.3309 18.2933 N C 6 0.0050 0.0009			O	_	0.0044	0.0002	0.0033		29.8129	Z	2.0	
C 3 0.0088 0.0006 0.0012 31.4770 33.4098 N C 4 0.0049 0.0006 0.0013 74.0873 15.0099 N C 5 0.0087 0.0006 0.0013 74.0873 15.0099 N C 6 0.0056 0.0008 27.3309 18.2933 N C 7 0.0096 0.0006 26.1653 118.6919 N C 8 0.0099 0.0006 26.1653 118.6919 N C 7 0.0096 0.0006 26.1653 118.6919 N C 9 0.0047 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0016 26.253 12.438 N C 13 0.0047 0.0006 0.0006 111.704 52.736 N C 14 0.0029 0.0007 0.0006 112.006 </td <td></td> <td></td> <td>O</td> <td>2</td> <td>0.0058</td> <td>0.0008</td> <td>0.0011</td> <td></td> <td>33.5391</td> <td>Z</td> <td>2.0</td> <td></td>			O	2	0.0058	0.0008	0.0011		33.5391	Z	2.0	
C 4 0.0049 0.0006 0.0013 74.0873 15.0099 N C 5 0.0087 0.0007 33.3166 95.0545 N C 6 0.0050 0.0008 27.3309 18.2933 N C 6 0.0050 0.0009 0.0009 63.6412 118.6919 N C 7 0.0095 0.0009 0.0005 26.1553 112.3542 N C 8 0.0094 0.0005 26.1553 112.3542 N C 9 0.0047 0.0013 37.786 45.419 N 0.8 mg/L Fe C 11 0.0034 0.0005 57.500 118.031 N C 12 0.0047 0.0006 89.617 34.789 N C 14 0.0058 0.0007 0.0006 106.774 95.458 N C 16 0.0007 0.0009 112.607 95.458 N <			O	3	0.0088	0.0006	0.0012		33.4098	Z	1.0	
C 5 0.0087 0.0008 27.3309 18.2933 N C 6 0.0050 0.0009 27.3309 18.2933 N C 7 0.0095 0.0009 26.412 118.6919 N C 8 0.0099 0.0005 26.1553 112.3542 N C 8 0.0099 0.0005 26.1553 112.3542 N C 9 0.0047 0.0013 37.786 45.419 N C 9 0.0047 0.0016 57.500 118.031 N 0.8 mg/L Fe C 11 0.0047 0.0006 89.617 34.789 N C 13 0.0047 0.0006 111.704 52.736 N C 14 0.0058 0.0007 111.607 29.450 N C 15 0.0007 0.0009 112.620 29.450 N C 18 0.0007 0.0009			ပ	4	0.0049	9000'0	0.0013		15.0099	Z	1.0	
C 6 0.0050 0.0008 27.3309 18.2933 N C 7 0.0095 0.0009 0.0005 26.1553 112.3542 N C 8 0.0099 0.0007 0.0013 37.786 45.419 N C 9 0.0047 0.0013 37.786 45.419 N C 10 0.0047 0.0010 57.500 118.031 N C 1 0.0047 0.0005 56.237 12.438 N C 1 0.0047 0.0006 89.617 34.789 N C 1 0.0031 0.0006 41.389 63.346 N C 1 0.0007 0.0008 112.620 29.450 N C 1 0.0007 0.0009 112.620 29.450 N C 1 0.0007 0.0009 0.0009 112.620 29.450 N C 1 0.0007			O	5	0.0087	2000.0		33.3166	95.0545	Z	0.0	
C 7 0.0095 0.0009 63.6412 118.6919 N C 8 0.0099 0.0005 26.1553 112.3542 N C 9 0.0047 0.0013 37.786 45.419 N C 10 0.0047 0.0010 57.500 118.031 N D 1.56 mg/L Fe C 11 0.0034 0.0005 56.237 12.438 N C 12 0.0047 0.0006 89.617 34.789 N C 13 0.0031 0.0006 89.617 34.789 N C 14 0.0058 0.0007 41.389 63.346 N C 15 0.0007 0.0008 112.620 29.450 N C 18 C 18 C 18 N C 19 0.0007 0.0009 112.620 29.450 N C 18 0.0007 0.0009			U	9	0.0050	0.0008		27.3309	18.2933	Z	0.0	
C 8 0.0099 0.0005 26.1553 112.3542 N C 9 0.0047 0.0013 37.786 45.419 N 1.56 mg/L S²- C 10 0.0041 0.0010 57.500 118.031 N 0.8 mg/L Fe C 11 0.0034 0.0005 89.617 34.789 N C 12 0.0047 0.0006 89.617 34.789 N C 13 0.0031 0.0006 111.704 52.736 N C 14 0.0058 0.0007 112.620 29.450 N C 16 0.0007 0.0008 112.620 29.450 N C 18 C 18 C 18 C C 19 C 10 0.0009 112.620 29.450 N C 18 C 18 C 18 C 10 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 </td <td></td> <td></td> <td>ပ</td> <td>7</td> <td>0.0095</td> <td>6000.0</td> <td></td> <td>63.6412</td> <td>118.6919</td> <td>Z</td> <td>0.0</td> <td></td>			ပ	7	0.0095	6000.0		63.6412	118.6919	Z	0.0	
1.56 mg/L S²- C 9 0.0047 0.0013 37.786 45.419 N 0.8 mg/L Fe C 11 0.0034 0.0005 56.237 118.031 N 0.8 mg/L Fe C 12 0.0047 0.0006 89.617 34.789 N C 13 0.0031 0.0006 111.704 52.736 N C 14 0.0058 0.0007 41.389 63.346 N C 16 0.0007 0.0008 112.620 29.450 N C 18 C 18 C 18 N C 19 C 10 0.0007 0.0009 112.620 29.450 N C 18 C 18 C 18 C 10 0.0009			ပ	ω	0.0099	0.0005		26.1553	ı	Z	0.0	
1.56 mg/L S²- C 10 0.0041 0.0010 57.500 118.031 N 0.8 mg/L Fe C 11 0.0034 0.0005 56.237 12.438 N C 12 0.0047 0.0006 89.617 34.789 N C 13 0.0031 0.0006 111.704 52.736 N C 14 0.0058 0.0007 112.620 29.456 N C 16 0.0020 0.0009 112.620 29.450 N C 18 C 18 C 18 N C 19 C 10 0.0007 0.0009 112.620 29.450 N C 18 C 18 C 18 C 10 0.0009 <			ပ	6	0.0047	0.0013		37.786		Z	0.0	
O.8 mg/L Fe C 11 0.0034 0.0005 56.237 12.438 N C 12 0.0047 0.0006 89.617 34.789 N C 13 0.0031 0.0006 111.704 52.736 N C 14 0.0058 0.0007 41.389 63.346 N C 15 0.0007 0.0008 112.620 29.450 N C 16 0.0020 0.0009 112.620 29.450 N C 18 C 18 C 18 C C 19 C 19 C 10 C C 19 C 10 C 10 C 10 C 19 0.0053 0.0007 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 <		1.56 mg/L S ²⁻	ပ	10	0.0041	0.0010		57.500		Z	0.0	
C 12 0.0047 0.006 89.617 34.789 N C 13 0.0031 0.0006 111.704 52.736 N C 14 0.0058 0.0007 41.389 63.346 N C 15 0.0007 0.0008 112.620 29.450 N C 16 0.0020 0.0009 112.620 29.450 N C 18 C 18 C C C C C 19 C 19 C C C C C C 19 C 10 0.0007		0.8 mg/L Fe	O	11	0.0034	0.0005		56.237		Z	0.0	
C 13 0.0031 0.0006 111.704 52.736 N C 14 0.0058 0.0007 41.389 63.346 N C 15 0.0007 0.0008 112.620 29.458 N C 17 0.0020 0.0009 112.620 29.450 N C 18 0.002 0.0009 0.0009 0.0009 0.0009 0.0009 C 18 0.000 0.0009 0.0000 <td></td> <td>)</td> <td>ပ</td> <td>12</td> <td>0.0047</td> <td>9000.0</td> <td></td> <td>89.617</td> <td></td> <td>Z</td> <td>0.0</td> <td></td>)	ပ	12	0.0047	9000.0		89.617		Z	0.0	
C 14 0.0058 0.0007 41.389 63.346 N C 15 0.0007 0.0008 112.620 29.458 N C 17 0.0020 0.0009 112.620 29.450 N C 18 0.0000 0.0000 0.0000 0.0000 0.0000 C 18 0.0000 0.0000 0.0000 0.0000 0.0000 C 19 0.0000 0.0001 0.0001 0.0001 0.0001			ပ	13	0.0031	9000'0		111.704		Z	0.0	
C 15 0.0007 0.0008 106.774 95.458 N C 16 0.0020 0.0009 112.620 29.450 N C 17 C 18 C 19 C 20 C 2			O	14	0.0058	0.0007		41.389		Z	0.0	
C 16 0.0020 0.0009 112.620 29.450 N C 17 C 18 C 19 C 20 C 2			O	15	0.0007	0.0008		106.774		Z	0.0	
C 17 C 18 C 19 C 20 C 20 C 20 C 20			U	16	0.0020	6000.0		112.620		Z	0.0	
C 18 C 19 C 20 C 20 C 20 D 60 D <td></td> <td></td> <td>O</td> <td>17</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			O	17								
C 19 C 20 O.0063 0.0007 O.0073 0.0007			O	18								
C 20			ပ	19								
0:0063 0:0007 0:0017 58:2210 56:7395			ပ	20								
	ages				0.0053	2000.0	0.0017	58.2210			0.4	

_																																							
2.0	2.0	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						0.5	2.0	1.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Z	Z	Z	Z	Z	z	Z	Z	Z	Z	Z	Z	Z	Z	Z							Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z								
51.75	63.0283	96.2842	22.5105	66.6849	50.4871	24.013	42.065	40.496	83.678	34.900	14.721	45.088	40.133	19.065						46.3266	36.0622	21.3393	38.8939	93.1530	30.8295	14.2441	17.0625	40.7980	24.1834	48.5123	70.9390								
33.5480	54.9562	28.0425	28.6317	33.2736	24.6084	20.141	171.759	40.146	39.348	52.192	60.278	143.512	46.034	64.375						56.0563	42.5416	38.1373	56.3349	20.2094	44.8254	24.4545	94.9190	56.6626	36.8632	111.7650	35.9312								
0.0026	0.0011	0.0005	0.0003																	0.0011	0.0059	9000.0	6000.0																
0.0005	0.0004	0.0004	9000.0	0.0008	0.0010	0.0008	0.0009	0.0007	9000.0	9000.0	0.0007	0.0005	9000.0	0.0009						0.0007	2000.0	9000.0	9000.0	0.0008	0.0007	6000.0	0.0011	0.0008	2000.0	0.0006	0.0004								
0.0077	0.0057	0.0128	0.0081	0.0022	0.0126	0.0070	0.0064	0.0033	0.0072	0.0049	0.0048	0.0033	0.0041	0.0047						0.0063	0.0031	0.0024	0.0036	0.0032	0.0032	0.0020	0.0036	0.0036	0.0016	0.0011	0.0019								
_	2	8	4	ς.	9	7	ω	6	10	7	12	13	14	15	16	17	18	19	20		-	2	3	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19
			Ω	Ω														Ω	Ω		٧	∢	⋖	⋖	∢	٧	٧	⋖	٧	٧	٧	⋖	∢	⋖	٧	٧	٧	⋖	⋖
									1.56 mg/L S ²⁻	0.8 mg/L Fe)																			$3.12 \mathrm{mg/L} \mathrm{S}^{2-}$	0.8 mg/L Fe)							
																				Averages																			

11.0379 40.9504 30.2180 32.7346 183.5730 33.7329 42.9540 52.0024 77.0007 50.2502
11.03/9 30.2180 183.5730 42.9540 77.0007
0.0006 0.0015 0.0013
8
В
_

		0	18							
		0	19							
		C 2	20							
Averages			0.0032	0.0010	0.0018	46.3043	42.3519		0.7	
			1 0.0054	1 0.0013	6000.0	23.6579	44.1575	Z	1.0	
			2 0.0042	0.0018	9000'0	37.2869	42.8772	Z	1.0	
			3 0.0031	匚		32.4044	41.8497	Z	0.0	
			4 0.0072			52.2488	79.5578	Z	0.0	
			5 0.0063	9000:0		65.2466	78.8075	Z	0.0	
			6800.0 9			60.8193	59.3229	Z	0.0	
			0:0030	0.0004		54.0061	20.2988	Z	0.0	
		~ _	8 0.0044	0.0006		42.7969	52.8190	Z	0.0	
			9 0.0031	8000.0		42.9657	58.8470	Z	0.0	
	3.12 mg/L S ²⁻	D 1	10							
	0.8 mg/L Fe	D 1	11							
	1	D 1	12							
		D 1	13							
		D 1	14							
		7	15							
		_	16							
		D 1	17							
		1	18							
		D 1	19							
		D 2	20							
Averages			0.0051	6000'0	0.0008	45.7147	53.1708		0.2	

			₹	IMAMU1-UU428 - Endpoint Data Summary	- Endpoint I	ata Summ	ı	Por Donlingto		ı	ı		ı	ı	Ī
						Ī		Replica	ָן 						
					Mesocotyl			Mean	Mean	Mean	Mean	Mean	Mean	Phytotox:	tox:
		Activated		Mesocotyl	Emerg-	Seedling		Root	Root	Shoot	Shoot	Dried Leaf	Free	Abnormal	mal
Treatment	Rep	Seed (n)	Activation (%)	Emerged (n)	euce (%)	Survival (n)	Survival (%)	Length (mm)	Weight (g)	Length (mm)	Weight (g)	Weight (g)	r) (i)	Appearance (n) (%)	ance (%)
	٧	40	100.0	18	45.0	18.0	100.0	34.2	0.0009	35.7	0.0038	0.0012	0.7	0	0.0
	В	40	100.0	18	45.0	18.0	100.0	31.7	0.0008	36.8	0.0045	0.0018	0.8	0	0.0
HS-1 (1-4) D 8 mg/l Ee	၁	40	100.0	16	40.0	16.0	100.0	33.6	0.0007	39.6	0.0034	0.0021	1.3	0	0.0
D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	О	40	100.0	19	47.5	19.0	100.0	32.3	0.0008	38.5	0.0033	0.0015	6.0	0	0.0
	Wean:	40	100	17.8	44.4	17.8	100.0	32.9	0.0008	37.7	0.0037	0.0017	6.0	0	0.0
	SEM:	0.0	0.0	0.63	1.57	0.63	0.0	0.58	0.0000	98'0	0.0003	0.0002	0.1	0.0	0.0
	٧	40	100.0	17	42.5	17.0	100.0	33.4	0.0010	28.4	0.0033	0.0036	0.2	0	0.0
	В	40	100.0	18	45.0	18.0	100.0	41.0	0.0011	45.9	0.0033	0.0025	0.4	0	0.0
0.3 m.c/l Sulfide 0.8 m.c/l Fe	O	40	100.0	18	45.0	18.0	100.0	44.0	0.0012	29.1	0.0031	0.0014	1.2	0	0.0
9 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۵	40	100.0	18	45.0	18.0	100.0	48.2	6000.0	35.8	0.0040	0.000	1.2	0	0.0
	Mean:	40	100	17.8	44.4	17.8	100	41.6	0.0010	34.8	0.0034	0.0021	0.8	0.0	0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	3.12	0.0001	4.07	0.0002	0.0006	0.3	0.00	0.0
	٧	40	100.0	17	42.5	17.0	100.0	41.9	0.0007	52.0	0.0043	0.0018	6.0	0	0.0
	В	40	100.0	16	40.0	16.0	100.0	58.7	0.0007	42.0	0.0061	0.0041	0.3	0	0.0
1.56 mg/1 Sulfide 0.8 mg/1 Fe	O	40	100.0	16	40.0	16.0	100.0	56.7	0.0007	58.2	0.0053	0.0017	0.4	0	0.0
	٥	40	100.0	15	37.5	15.0	100.0	46.3	0.0007	56.1	0.0063	0.0011	0.5	0	0.0
	Mean:	40	100	16.0	40.0	16.0	100	50.9	0.0007	52.1	0.0055	0.0022	0.5	0	0
	SEM:	0.0	0.0	0.41	1.02	0.41	0.0	4.06	0.0000	3.59	0.0004	0.0007	0.1	0.0	0.0
	٧	40	100.0	11	27.5	11.0	100.0	39.6	0.0007	51.1	0.0027	0.0025	0.5	0	0.0
	В	40	100.0	11	27.5	11.0	100.0	41.5	0.0009	54.4	0.0049	0.0029	0.4	0	0.0
3 12 mg/l Sulfide 0 8 mg/l Fe	O	40	100.0	6	22.5	9.0	100.0	42.4	0.0010	46.3	0.0032	0.0018	0.7	0	0.0
	۵	40	100.0	6	22.5	9.0	100.0	53.2	0.0009	45.7	0.0051	0.0008	0.2	0	0.0
	Mean:	40	100	10.0	25.0	10.0	100	44.2	0.0009	49.4	0.0040	0.0020	0.4	0.0	0
	SEM:	0.0	0.0	0.58	1.44	0.58	0.0	3.06	0.0001	2.06	0.0006	0.0005	0.1	0.00	0.0

Takedown Data

Client/Project-WO No: SQME01-00428

Comments 0.0 0.0 0.0 0.0 Free Leaf No. Phytotoxicity (Y or N) ZZZZ 25.7231 30.2482 38.2239 23.4542 Root Length (mm) 40.5377 44.7841 47.1999 23.8033 13.8055 21.6018 31.7811 Shoot Length (mm) 0.0016 **Biomass Wt (g)** 0.0016 0.0007 0.0004 0.0008 0.0011 0.0015 0.0007 Root Wt (g) 0.0028 0.0013 0.0027 0.0040 0.0019 Shoot Wt (g) Seed No. 4 9 15 16 10 18 19 20 4 თ Rep No. ⋖ ⋖ ⋖ ⋖ ⋖ ⋖ ⋖ ⋖ $7.8 \,\mathrm{mg/L} \,\mathrm{S}^2$ - $0.8 \,\mathrm{mg/L} \,\mathrm{Fe}$ $7.8~\text{mg/L}~\text{S}^\text{2-}$ **Treatment** Tech Initials Date verages

										0.3	1.0	2.0	0.0	0.0	0.0																9'0	1.0	0.0	0.0	0.0	0.0			
											Z	Z	Z	Z	Z																	Z	Z	Z	Z	Z			
										29.4124	58.1199	29.9465	30.9133	59.5752	70.6918																49.8493	34.3050	52.1065	10.4626	40.1932	36.8716			
										0.0007 26.6026	23.0512	69.1964	48.4580	21.2475	17.7433																0.0019 35.9393	31.3042	10.1774		32.0567				
										0.0007	9000'0	0.0031																			0.0019	0.0018							
										0.0010	9000'0	0.0005	6000.0	0.0010	0.0012																8000'0	0.0003	6000.0	6000.0	0.0007	9000.0			
										0.0027	0.0019	0.0018	0.0019	0.0002	0.0008																0.0013	0.0004	0.0056	0.0029	0.0012	0.0004			
11	12	13	14	15	16	17	18	19	20		-	2	က	4	2	9	2	ω	6	10	11	12	13	14	15	16	17	18	19	20		1	2	က	4	Ŋ	9	2	8
Ш	В	В	В	В	В	В	М	М	М		O	O	ပ	O	ပ	O	O	O	O	O	ပ	ပ	O	O	O	O	O	O	O	O								□	
0.8 mg/L Fe)																			7.8 mg/L S ²⁻	0.8 mg/L Fe)																	
										Averages																					Averages								

												0.2	2.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			9.0	3.0	3.0	3.0	3.0	0.0	0.0
													Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z				Z	Z	Z	Z	Z	Z
												34.7878	128.414	32.502	_						48.285								(1	9.831			40.8901	39.833	41.412	34.993			70.912
												20.2687	21.861	29.167		22.033	74.203	45.746	96.325	139.254	97.170	30.096	55.600	46.430	39.769	40.153	34.893	100.264	91.325	86.766			60.3589	28.768		58.184		28.049	105.613
													2000'0	0.0005	9000'0	7000.0																	9000.0	0.0018	0.0011	0.0018	0.0011		
												0.0007	0.0010	0.0009	0.0017	0.0013	0.0011	0.0004	0.0007	0.0010	0.0007	0.0008	0.0011	0.0013	0.0012	0.0009	0.0006	0.0003	0.0004	0.0005			6000.0	6000.0	0.0007	0.0009	0.0011	0.0015	0.0010
												0.0021	0.0061	0.0075	0.0088	0.0031	0.0082	0.0047	0.0081	0.0076	0.0076	0.0045	0.0026	0.0034	0.0038	0.0027	0.0034	0.0058	0.0024	0.0027			0.0052	0.0037	0.0027	0.0058	0.0054	0.0014	0.0041
6	10	11	12	13	14	15	16	- 11	18	19	20		-	2	က	4	2	9		∞	6	10	11	12	13	14	15	16	17	18	19	20		_	2	က	4	2	9
													۷	∢	∢	∢	∢	∢	∢	∢	∢	A	A	⋖	∢	A	٧	A	A	∢	∢	Α		М	Ш	Ш	В	Ш	В
	7.8 mg/L S ²⁻	0.8 mg/L Fe	ò																			HS-1 (1:4)	2.8 mg/L Fe																
												Averages																					Averages						

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		9.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.3	2.0	3.0	0.0	0.0
Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z			Z	z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z				Z	Z	Z	Z
60.481	11.027	10.030	10.901	43.728	44.797	43.278	21.730	24.888	48.224	29.354	32.045	20.551		35.3963	40.023	49.924	966.09				38.402						77.934	83.914	33.650	15.948	59.029	31.577			45.9605	26.375	36.391	17.511	43.470
21.402	66.178	34.517	46.055	23.650	26.456	33.019	84.208	84.314	42.196	55.806	64.264	63.615		49.1828	26.265	19.109	66.957	34.617	64.663	36.508	26.422	157.582	95.537	26.247	26.120	135.463	45.515	32.012	84.604	37.962	16.537	44.930			54.2806	35.933		١, ١	34.611
														0.0015	0.0012	0.0021																			0.0017	0.0037	0.0023	0.0020	
0.0007	0.0005	0.0003	0.0002	0.0004	0.0008	9000.0	0.0011	6000.0	0.0013	0.0010	0.0005	0.0006		0.0008	0.0017	0.0021	0.0016	0.0014	0.0011	6000.0	9000.0	0.0002	2000.0	9000.0	0.0005	0.0010	0.0011	0.0013	0.0011	0.0007	9000.0	0.0002			0.0010	0.0017	0.0013	0.0011	0.0017
0.0070	0.0050	0.0050	0.0057	0.0047	0.0064	0.0061	0.0042	0.0029	0.0017	0.0033	0.0019	0.0018		0.0041	0.0041	0.0074	0.0033	0.0023	0.0029	0.0042	0.0046	0.0029	0.0053	0.0024	0.0063	0.0018	0.0049	0.0021	0.0051	0.0032	0.0031	0.0025			0.0038	0.0047	0.0034	0.0057	0.0038
7	8	6	10	11	12	13	14	15	16	17	18	19	20		1	2	3	4	9	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20		-	2	3	4
В	В	В	В	В	В	М	М	В	В	М	М	В	В		0	O	O	O	O	O	O	ပ	ပ	O	O	O	O	O	S	O	ပ	O	O	O					
			HS-1 (1:4)	2.8 mg/L Fe																				HS-1 (1:4)	2.8 mg/L Fe	1													
														Averages																					Averages				

T 20		۵۵	0	0.0044	0.008		120.712	7	Z	0.0
± 2)	•	0.000	ניטטט		51.078	35 170	Z	Ξ
± %		_	> h	0.000	0.0000		10.070		2 2	0.00
± 2		ם מ	- 0	0000	200.0		10.410	0.00	2 2	0.00
T %		ם מ	0	0.0044	0.0004		770.01		2 2	0.0
, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			ה ל	0.0029	0.000		91.229	-	2	0.0
53	IS-1 (1:4)		9	0.0043	0.0006		36.461		Z	0.0
	2.8 mg/L Fe		11	0.0042	0.0001		38.859		Z	0.0
			12	0.0070	6000.0		19.682		Z	0.0
		Ω	13	0.0024	0.0008		28.387	22.828	Z	0.0
			14	0.0031	0.0011		36.787		Z	0.0
			15	0.0039	0.0005		63.154	ı	Z	0.0
		Δ	16	0.0058	0.0007		20.914	67.804	Z	0.0
		Ω	17	0.0075	9000.0		23.230		Z	0.0
			18	0.0130	0.0011		27.099	47.329	Z	0.0
		Δ	19							
		□	20							
Averages				0.0051	6000'0	0.0027	39.6734	36.9327		0.3
		٧	1	0.0071	0.0015	0.0032	39.376		Z	3.0
		٨	2	0.0034	0.0017		34.854		N	0.0
		⋖	3	0.0042	0.0023		55.251		N	0.0
		⋖	4	0.0031	0.0018		32.499		N	0.0
		∢	5	0.0015	0.0011		36.729		Z	0.0
		⋖	9	0.0037	0.0005		48.35		N	0.0
		4	7	0.0055	0.0007		36.469		N	0.0
		٧	8	0.0043	0.0010		43.142	_	N	0.0
		∢	6	0.0036	0.0012		51.775		N	0.0
Ö	$3 \mathrm{mg/L} \mathrm{S}^2$	⋖	10	0.0061	0.0004		42.689		Z	0.0
2.6	.8 mg/L Fe	⋖	11	0.0043	0.0003		163.9		Z	0.0
		4	12	0.0029	0.0008		899'89		Z	0.0
		4	13	0.0057	0.0006		52.283		Z	0.0
		٧	14	0.0020	9000.0		68.863	19.9041	Z	0.0
		٧	15	0.0039	0.0007		74.353	24.8406	N	0.0
		⋖	16	0.0026	0.0005		70.694	46.5891	Z	0.0
		∢	17	0.0030	6000.0		90'.26	30.7381	Z	0.0
		∢	18	0.0029	0.0012		92.92		Z	0.0
		∢	19	0.0025	0.0013		36.064	40.1604	Z	0.0
		∢	20							
Averages				0.0038	0.0010	0.0032	60.3126	40.3231		0.2
		В	-	0.0030	0.0018	0.0015		ω	Z	3.0
		В	2	0.0036	0.0017	0.0034			Z	3.0

3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			9.0	3.0	3.0	3.0	2.0	2.0	3.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		ر ن
Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z				Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	z	Z	Z		
101315	30.7086	116.462	26.9576	85.3123	91.0913	95.466	12.4007	20.832	13.1825	22.8523	19.9171	20.937	20.4953	42.4075	41.6119			47.6386	86.8371	42.5255	26.6057	80.9088	82.9471	84.9406	71.4123	42.046	41.0201	97.2183	38.7404	19.7674	103.373	38.1623	50.3032	62.267	63.5476	42.9378	11.6559		57.2219
८५६ ५६	63.121	39.342	25.155	38.272	36.915	20.745	29.496	47.702	35.893	41.623	33.276	66.937	66.523	40.831	18.655			40.4793	36.673	ľ	27.14	20.027			ı		72.834	60.408	44.468	29.138	33.455	50.384	89.111	19.974	44.208	61.039	18.163		0.0009 39.5979
0.0011	5																	0.0020	0.0018	0.0004	0.0002	0.0007	0.0008	0.0005	0.0011	0.0015	0.0012												00000
0.0013	0.0008	0.0012	0.0011	0.0009	0.0007	0.0007	0.0007	0.0001	0.0003	0.0002	0.0008	9000:0	0.0009	0.0012	0.0003			0.000	0.0019	0.0013	0.0004	0.0012	0.0011	6000.0	9000:0	0.0007	9000'0	0.0007	0.0007	0.0009	0.0007	0.0007	0.0008	0.0010	0.0012	6000.0	0.0005		6000.0
0.0052	0.0035	0.0054	0.0083	0.0050	0.0056	0.0109	0.0045	0.0052	0.0061	0.0033	0.0018	0.0028	0.0024	0.0027	0.0031			0.0046	0.0022	0.0034	0.0023	0.0069	0.0027	0.0041	0.0022	0.0036	0.0018	0.0074	0.0051	0.0046	0.0041	0.0040	0.0031	0.0018	0.0037	0.0025	0.0017		0.0035
٣	4	2	9	7	ω	0	10	11	12	13	14	15	16	17	18	19	20		l	2	က	4	5	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	
<u> </u>	m	Ш	М	m	Ш	Ш	Ш	m	Ш	Ш	m	Ш	Ш	Ш	Ш	മ	Ш		O	O	O	O	O	O	O	O	ပ	ပ	O	U	ပ	O	O	O	O	O	O	U	
							0.3 mg/L S ²⁻	2.8 mg/L Fe																				$0.3 \mathrm{mg/L} \mathrm{S}^2$	2.8 mg/L Fe)									
																		Averages																					Averages

3.0	2.0	3.0	3.0	3.0	2.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			1.1	3.0	3.0	2.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z				Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z		
63.0655	41.7103	44.3572	78.6664	61.1354	49.0108	47.5445	40.2636	35.2709	43.7121	24.6999	35.429	37.9009	60.3727	32.1059	94.7199	23.7098	17.1346			46.1561	32.9337	30.9842	22.0731	32.5534	33.6167	28.6113	18.6026	33.0263	45.5893	43.5604	38.535	66.3675	51.1195	99.6718	40.3706	30.0858	80.5274		
26.287	37.241	23.618	30.213	28.705	29.36	31.503	21.546	37.085	23.403	15.652	22.648	51.788	68.22	55.209	62.086	90.284	38.072			38.4955	27.203	21.507	28.079	35.53	19.667	27.22	70.968	27.45	124.78	90.953	39.961	14.512	130.34	89.326	116.08	92.307	105.57		
0.0010	0.0022	0.0015	0.0021	0.0004	0.0002	0.0011														0.0012	0.0014	0.0027	9000'0	0.0021	0.0032	0.0012													
0.0013	0.0017	0.0019	0.0012	9000.0	0.0007	0.0003	2000.0	0.0009	0.0014	0.0011	2000.0	9000.0	6000.0	0.0010	0.0009	0.0007	0.0003			6000'0	0.0015	0.0019	0.0013	0.0011	0.0008	9000.0	0.0004	0.0002	0.0004	0.0007	0.0008	0.0011	6000.0	9000.0	9000.0	0.0003	0.0002		
0.0039	0.0049	0.0039	0.0039	0.0039	0.0042	0.0032	0.0046	0.0027	0.0033	0.0032	0.0017	0.0017	0.0026	0.0026	0.0017	0.0015	0.0012			0.0030	0.0018	0.0052	0.0045	0.0044	0.0053	0.0030	0.0069	0.0043	0.0060	0.0056	0.0066	0.0029	0.0032	0.0028	0.0033	0.0023	0.0017		
_	2	င	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20		-	2	8	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19
	□	□		□		□					□								△		٧	∢	٧	٧	∢	٧	٨	٧	٧	۷	∢	∢	∢	∢	∢	∢	⋖	⋖	∢
									0.3 mg/L S ²⁻	2.8 mg/L Fe)																			1.56 mg/L S²-	2.8 mg/L Fe)							
																				Averages																			

2.0 0.0041 0.0008 0.0019 62.4386 42.8370 1 0.0069 0.0021 0.0064 36.171 60.9427 N 2 0.0035 0.0016 0.0062 115.92 42.7416 N 4 0.0036 0.0017 0.0062 115.92 42.7416 N 5 0.0035 0.0001 0.0062 12.83 90.6882 N 6 0.0036 0.0003 0.0003 22.83 50.6882 N 7 0.0077 0.0007 43.864 45.1486 N 10 0.0026 0.0009 32.528 50.9642 N 11 0.0079 0.0009 33.608 38.8779 N 11 0.0026 0.0009 35.677 20.5944 N 12 0.0079 0.0009 35.677 20.544 N 14 0.0079 0.0009 35.677 20.544 N 15 0.0079 0.			۷	20								
B	/erages				0.0041	0.0008	0.0019		42.8370		1.0	
Control Cont			В	-	0.0069	0.0021	0.0064		60.9427	Z	3.0	
156 mg/L S² 8 3 0.0047 0.0015 0.0055 0.1551 N N			Ш	2	0.0035	0.0016	0.0062			Z	3.0	
Comparison			Ш	3	0.0047	0.0013	0.0055			Z	2.0	
Company Comp			В	4	0.0036	0.0011	6000.0			N	2.0	
1.56 mg/L S²- B 6 0 00000 0.00007 43.854 45.1866 N N 1.56 mg/L S²- B 10 0 00050 0.0000			В	5	0.0095	0.0005		22.83		Z	0.0	
1.56 mg/L S² B 7 0.0077 0.0007 10.124 33.2432 N N 2.8 mg/L Fe B 10 0.0025 0.0008 84.615 26.7481 N N 2.8 mg/L Fe B 11 0.0025 0.0008 84.615 26.3426 N N B 12 0.0034 0.0008 33.608 36.8779 N N B 13 0.0034 0.0008 33.608 36.8779 N N B 14 0.0013 0.0008 34.473 25.516 N N B 15 0.0013 0.0008 36.614 39.7486 N N B 17 0.0130 0.0003 0.0004 60.644 19.7489 N N B 18 10 0.0003 0.0004 0.614 29.0718 N N B 19 0.0013 0.0004 0.0013 0.0004 0.0018 0.0018 0.0019 B 10 0.0028 0.0004 0.0004 20.644 29.0718 N N C 2 0.0028 0.0004 0.0004 20.644 29.0718 N N C 3 0.0029 0.0004 0.0004 20.644 29.0718 N C 5 0.0024 0.0007 0.0004 20.644 29.408 N C 7 0.0013 0.0006 0.0004 20.644 29.408 N C 7 0.0028 0.0006 0.0005 20.206 20.206 0.0007 C 8 0.0024 0.0007 20.004 20.404 20.404 N C 7 0.0029 0.0006 0.0007 20.644 35.405 N C 7 0.0014 0.0007 20.007 20.404 20.405 N C 7 0.0014 0.0006 0.0007 20.44 35.402 N C 10 0.0029 0.0006 0.0007 20.44 35.402 N C 11 0.0029 0.0006 0.0007 20.44 35.402 N C 14 0.0017 0.0006 0.0007 27.74 35.948 N C 15 0.0007 0.0007 27.74 35.948 N C 14 0.0017 0.0006 0.0007 27.74 35.948 N C 14 0.0017 0.0006 0.0007 27.74 35.948 N C 15 0.0017 0.0006 0.0017 27.74 35.948 N C 15 0.0017 0.0006 0.0007 27.74 35.948 N C 15 0.0007 0.0007 27.74 35.948 N			В	9	0.0089	0.0003		32.528		Z	0.0	
156 mg/L S ² B 10 0000 00000 56 551 6 7461 N N 156 mg/L S ² B 11 0.0025 0.0000 33 608 36 8779 N N 156 mg/L S ² B 11 0.0025 0.0000 34 695 1 26 34 4 1931 N 156 mg/L S ² B 11 0.0025 0.0000 34 695 1 26 534 N N 156 mg/L S ² B 11 0.0025 0.0000 34 695 1 26 534 N N 156 mg/L S ² C 0.0075 0.0000 0.0045			В	2	0.0077	2000.0		43.854		Z	0.0	
1.56 mg/L S²			Ш	8	0.0060	0.0009		101.24		Z	0.0	
1.56 mg/L S²- B 110 0.0025 0.0009 84.615 29.3126 N N S S S S S S S S S S S S S S S S S			Ш	6	0.0046	0.0010		95.851		Z	0.0	
2.8 mg/L Fe B 11 0.0033 0.0006 35.677 20.5944 N B 12 0.0079 0.0006 35.677 20.5944 N B 13 0.0079 0.0003 76.462 48.0478 N B 14 0.0019 0.0002 76.462 48.0478 N B 15 0.0046 0.0003 76.462 48.0478 N B 16 0.0013 0.0004 0.0003 76.462 48.0478 N B 16 0.013 0.0004 0.0003 0.0044 19.7349 N B 16 0.013 0.0004 0.0004 0.0004 0.0004 0.0004 B 17 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 C 2 0.0002 0.0004 0.0002 0.0004 0.0004 0.0004 C 2 0.00024 0.0004 0.0002 0.0004		1.56 mg/L S ²⁻	ш	10	0.0025	0.0009		84.615		Z	0.0	
B 12 0.0079 0.0006 35.577 20.5944 N N B 13 0.0034 0.0003 34.423 25.516 N N B 14 0.0041 0.0002 76.462 48.0478 N B 16 0.0041 0.0003 76.462 48.0478 N B 17 0.0130 0.0004 96.614 29.0718 N B 18 19 0.0048 0.0048 60.2729 42.8450 N C 1 0.0038 0.0048 60.2729 42.8450 N C 2 0.0028 0.0004 0.0004 20.644 53.4736 N C 3 0.0029 0.0009 0.0003 20.644 53.4736 N C 4 0.0037 0.0007 20.0048 20.4843 N C 5 0.0034 0.0009 0.0003 20.644 53.4736 N C 6 0.0024 0.0001 20.0048 52.308 N C 7 0.0001 0.0001 20.644 53.4736 N C 8 0.0051 0.0001 57.144 35.9522 N C 9 0.0051 0.0002 52.304 63.4423 N C 10 0.0029 0.0002 52.443 57.948 N C 11 0.0034 0.0002 52.443 S1.413 N C 12 0.0002 0.0002 31.11 S1.943 N C 13 0.0002 0.0002 37.13 S1.431 N C 14 0.0013 0.0002 37.13 S1.442 N C 15 0.0002 0.0002 37.13 S1.442 N C 14 0.0013 0.0002 37.13 S1.442 N C 15 0.0002 0.0002 37.13 S1.442 N C 14 0.0013 0.0002 37.13 S1.442 N C 15 0.0002 0.0002 37.13 S1.441 N C 16 0.0004 0.0006 S3.444 N C 17 0.0002 0.0006 S3.444 N C 18 0.0001 0.0002 37.13 S1.441 N C 19 0.0001 0.0002 37.13 S1.441 N C 14 0.0013 0.0006 S3.414 N C 15 0.0001 0.0006 S3.414 N C 16 0.0004 0.0006 S3.414 N C 17 0.0008 S3.414 N C 18 0.0014 0.0006 S3.414 N C 19 0.0014 0.0006 S3.414 N C 19 0.0014 0.0006 S3.414 N C 17 0.0028 0.0006 S3.414 N C 18 0.0014 0.0006 S3.414 N C 19 0.0014 0.0006 S3.414 N C 19 0.0014 0.0006 S3.414 N C 11 0.0028 0.0006 S3.414 N C 12 13 0.0014 0.0006 S3.414 N C		2.8 mg/L Fe	Ш	11	0.0033	0.0008		33.608	ı	Z	0.0	
B 13 0.0034 0.0003 34.423 25.516 N B 14 0.0019 0.0002 52.633 441931 N B 15 0.0046 0.0003 52.634 41.931 N B 16 0.0013 0.0004 60.841 29.0718 N B 17 0.0130 0.0004 96.614 29.0718 N B 18 19		ò	ш	12	0.0079	9000.0		35.577		Z	0.0	
B 14 0.0019 0.0002 52.683 44.1931 N B 15 0.0046 0.0003 76.462 48.0478 N B 16 0.0013 0.0004 66.844 19.7949 N B 17 0.0130 0.0004 66.844 19.7949 N B 18 19 0.0004 0.0004 19.7949 N B 18 19 0.0004 0.0004 0.0041 29.0718 N B 19 0.0005 0.0004 0.0048 0.0072 0.0049 0.0004 C 2 0.0005 0.0004 0.0004 0.0007 0.0444 0.0007 0.0004 C 2 0.0002 0.0009 0.0004 0.0007 0.0444 0.0007 C 3 0.0002 0.0009 0.0004 0.0007 0.0444 0.0007 C 4 0.0037 0.0009 0.0002 0.0006 0.0004 0.0007 C 5 0.0002 0.0009 0.0005 0.0006 0.0007 0.0007 C 6 0.00024 0.0007 0.0005 0.0006 0.0007 0.0007 C 7 0.0016 0.0007 0.0007 0.0007 0.0007 0.0007 C 10 0.0002 0.0007 0.0007 0.0007 0.0007 C 10 0.0002 0.0007 0.0007 0.0007 0.0007 C 11 0.0002 0.0007 0.0007 0.0007 0.0007 0.0007 C 12 0.0002 0.0006 0.0007 0.0007 0.0007 C 14 0.0017 0.0007 0.0007 0.0007 0.0007 C 15 0.0002 0.0007 0.0007 0.0007 0.0007 C 16 0.0002 0.0007 0.0007 0.0007 0.0007 C 17 0.0002 0.0006 0.0007 0.0007 0.0007 C 18 0.0001 0.0007 0.0007 0.0007 0.0007 C 19 0.0001 0.0007 0.0007 0.0007 0.0007 C 10 0.0002 0.0007 0.0007 0.0007 0.0007 0.0007 C 15 0.0002 0.0007 0.0007 0.0007 0.0007 0.0007 C 17 0.0002 0.0007 0.0007 0.0007 0.0007 0.0007 C 18 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 C 19 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 C 10 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 C 10 0.0007 0.0007 0.0007 0.0007 0.0007			В	13	0.0034	0.0003		34.423		N	0.0	
B 15 0.0046 0.0003 76.462 48.0478 N B 16 0.0013 0.0004 60.844 19.7946 N B 16 0.0013 0.0004 96.614 29.0718 N B 18 19			В	14	0.0019	0.0002		52.683		Z	0.0	
B 16 0.0013 0.0004 60.844 19.7949 N B 17 0.0130 0.0004 96.614 29.0718 N B 18			ш	15	0.0046	0.0003		76.462	48.0478	Z	0.0	
B 17 0.0130 0.0004 96.614 29.0718 N B 18			Ш	16	0.0013	0.0004		60.844		Z	0.0	
B			В	17	0.0130	0.0004		96.614		Z	0.0	
B 19 0.0065 0.0048 0.0048 0.02729 42.8450 N			В	18								
B 20 0.0056 0.0048 60.2729 42.8450			В	19								
C 1 0.0056 0.0048 60.2729 42.8450 C 1 0.0038 0.0015 0.0040 41.108 59.2108 N C 2 0.0028 0.0013 0.0043 20.677 70.4545 N C 3 0.0029 0.0009 0.0064 53.4736 N C 4 0.0037 0.0009 0.0062 27.044 65.3406 N C 5 0.0034 0.0009 0.0028 31.795 55.9309 N C 6 0.0024 0.0013 0.0013 31.493 59.4893 N C 7 0.0014 0.0013 0.0013 31.493 59.4893 N C 8 0.0051 0.0006 0.0013 31.493 59.4893 N C 9 0.0051 0.0006 0.0007 57.144 N C 10 0.0051 0.0004 0.0007 57.144 35.442 <td></td> <td></td> <td>В</td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			В	20								
C 1 0.0038 0.0015 0.0040 41.108 59.2108 N C 2 0.0028 0.0013 0.0043 20.677 70.4545 N C 3 0.0029 0.0009 0.0062 27.044 65.3406 N C 4 0.0037 0.0009 0.0028 31.795 55.9309 N C 5 0.0034 0.0009 0.0028 31.795 55.9309 N C 6 0.0024 0.0010 0.0013 31.493 59.4893 N C 7 0.0016 0.0013 0.0005 52.305 75.7177 N C 8 0.0051 0.0006 0.0012 56.14 35.9622 N C 9 0.0051 0.0004 0.0007 57.144 35.9622 N C 10 0.0029 0.0004 0.0007 71.44 35.9622 N C 11 0.0029	erages				0.0055	0.0008	0.0048		42.8450		9.0	
C 2 0.0028 0.0013 0.0043 20.677 70.4545 N C 3 0.0029 0.0009 0.0009 20.664 53.4736 N C 4 0.0037 0.0009 0.0062 27.044 65.3406 N C 5 0.0034 0.0009 0.0028 31.795 55.9309 N C 6 0.0024 0.0010 0.0013 31.493 59.4893 N C 7 0.0016 0.0013 31.493 59.4893 N C 8 0.0024 0.0013 0.0005 52.305 75.7177 N C 8 0.0051 0.0004 0.0007 57.144 35.9622 N C 9 0.0054 0.0004 0.0007 77.144 35.9622 N C 10 0.0029 0.0004 0.0007 37.144 35.9622 N C 11 0.0020 0.0005			0	1	0.0038	0.0015	0.0040		59.2108	Z	3.0	
C 3 0.0029 0.0009 0.0064 53.4736 N C 4 0.0037 0.0007 0.0062 27.044 65.3406 N C 5 0.0034 0.0009 0.0028 31.795 55.9309 N C 6 0.0024 0.0013 0.0028 31.795 55.9309 N C 7 0.0016 0.0013 31.493 59.4893 N C 7 0.0016 0.0013 0.0005 75.7177 N C 8 0.0051 0.0006 0.0012 56.11 57.9448 N C 9 0.0051 0.0004 0.0007 57.144 35.9622 N C 10 0.0029 0.0004 0.0007 71.44 35.9622 N C 11 0.0029 0.0005 0.0005 31.11 81.9434 N C 12 0.0020 0.0005 31.11 81.9434			ပ	2	0.0028	0.0013	0.0043			N	3.0	
C 4 0.0037 0.0062 27.044 65.3406 N C 5 0.0034 0.0009 0.0028 31.795 55.9309 N C 6 0.0024 0.0010 0.0013 31.493 59.4893 N C 7 0.0016 0.0013 0.0005 52.305 75.7177 N C 8 0.0051 0.0006 0.0012 56.11 57.9448 N C 9 0.0051 0.0004 0.0007 57.144 35.9622 N C 10 0.0029 0.0004 0.0007 57.144 35.9622 N C 11 0.0029 0.0004 0.0007 71.44 35.9622 N C 11 0.0029 0.0005 31.11 81.9434 N C 12 0.0020 0.0005 37.153 81.811 N C 14 0.0013 0.0006 77.042 36.1448			ပ	3	0.0029	0.0009	0.0009			Z	2.0	
C 5 0.0034 0.0009 0.0028 31.795 55.9309 N C 6 0.0024 0.0013 0.0013 31.493 59.4893 N C 7 0.0016 0.0013 0.0005 52.305 75.7177 N C 8 0.0051 0.0006 0.0012 56.11 57.9448 N C 9 0.0051 0.0004 0.0007 57.144 35.9622 N C 10 0.0029 0.0004 0.0007 77.144 35.9622 N C 11 0.0029 0.0004 0.0007 71.44 35.9622 N C 11 0.0024 0.0005 19.948 43.4423 N C 12 0.0020 0.0005 37.153 81.811 N C 13 0.0027 0.0006 37.163 81.811 N C 15 0.0015 0.0006 77.042 36.1448			ပ	4	0.0037	0.0007	0.0062			Z	3.0	
C 6 0.0024 0.0010 0.0013 31.493 59.4893 N C 7 0.0016 0.0013 0.0005 52.305 75.7177 N C 8 0.0051 0.0006 0.0012 56.11 57.9448 N C 9 0.0051 0.0004 0.0007 57.144 35.9622 N C 10 0.0029 0.0004 0.0007 77.144 35.9622 N C 11 0.0029 0.0004 0.0007 19.948 43.4423 N C 12 0.0020 0.0005 31.11 81.9434 N C 13 0.0027 0.0005 37.153 81.811 N C 14 0.0013 0.0006 77.042 36.1448 N C 15 0.0015 0.0006 77.042 36.1448 N C 16 0.0024 0.0006 77.042 36.1448 N			ပ	5	0.0034	0.0009	0.0028			Z	3.0	
C 7 0.0016 0.0003 0.0006 52.305 75.7177 N C 8 0.0051 0.0006 0.0012 56.11 57.9448 N C 9 0.0051 0.0004 0.0007 57.144 35.9622 N C 10 0.0029 0.0004 0.0007 77.144 35.9622 N C 11 0.0029 0.0004 16.968 33.4442 N C 12 0.0020 0.0005 31.11 81.9434 N C 13 0.0027 0.0005 37.153 81.811 N C 14 0.0013 0.0006 77.042 36.1448 N C 15 0.0015 0.0006 77.042 36.1448 N C 16 0.0024 0.0006 61.978 43.7671 N C 17 0.0028 0.0005 15.358 57.2181 N			ပ	9	0.0024	0.0010	0.0013			N	3.0	
C 8 0.0051 0.0006 0.0012 56.11 57.9448 N C 9 0.0051 0.0004 0.0007 57.144 35.9622 N C 10 0.0029 0.0004 0.0007 77.144 35.9622 N C 11 0.0029 0.0004 16.968 33.4442 N C 12 0.0029 0.0005 31.11 81.9434 N C 13 0.0027 0.0007 40.66 53.122 N C 14 0.0013 0.0009 37.153 81.811 N C 15 0.0015 0.0006 77.042 36.1448 N C 16 0.0024 0.0006 61.978 43.7671 N C 17 0.0028 0.0005 15.358 57.2181 N			ပ	7	0.0016	0.0013	0.0005			Z	3.0	
C 9 0.0051 0.0004 0.0007 57.144 35.9622 N C 10 0.0029 0.0004 16.968 33.4442 N C 11 0.0034 0.0002 19.948 43.4423 N C 12 0.0020 0.0005 31.11 81.9434 N C 13 0.0027 0.0007 40.66 53.122 N C 14 0.0013 0.0009 37.153 81.811 N C 15 0.0015 0.0006 77.042 36.1448 N C 16 0.0024 0.0006 61.978 43.7671 N C 17 0.0028 0.0005 15.358 57.2181 N			ပ	8	0.0051	0.0006	0.0012			Z	2.0	
C 10 0.0029 0.0004 16.968 33.4442 N C 11 0.0034 0.0002 19.948 43.4423 N C 12 0.0020 0.0005 31.11 81.9434 N C 13 0.0027 0.0007 40.66 53.122 N C 14 0.0013 0.0009 37.153 81.811 N C 15 0.0015 0.0006 77.042 36.1448 N C 16 0.0024 0.0006 61.978 43.7671 N C 17 0.0028 0.0005 15.358 57.2181 N			ပ	6	0.0051	0.0004	0.0007	ı		Z	3.0	
C 11 0.0034 0.0002 19.948 43.4423 N C 12 0.0020 0.0005 31.11 81.9434 N C 13 0.0027 0.0007 40.66 53.122 N C 14 0.0013 0.0009 37.153 81.811 N C 15 0.0015 0.0006 77.042 36.1448 N C 16 0.0024 0.0006 61.978 43.7671 N C 17 0.0028 0.0005 15.358 57.2181 N		1.56 mg/L S ²⁻	ပ	10	0.0029	0.0004		16.968		Z	0.0	
C 12 0.0020 0.0005 31.11 81,9434 N C 13 0.0027 0.0007 40.66 53,122 N C 14 0.0013 0.0009 37,153 81,811 N C 15 0.0015 0.0006 77.042 36,1448 N C 16 0.0024 0.0006 61,978 43,7671 N C 17 0.0028 0.0005 15,358 57,2181 N		2.8 mg/L Fe	O	11	0.0034	0.0002		19.948		Z	0.0	
13 0.0027 0.0007 40.66 53.122 N 14 0.0013 0.0009 37.153 81.811 N 15 0.0015 0.0006 77.042 36.1448 N 16 0.0024 0.0006 61.978 43.7671 N 17 0.0028 0.0005 15.358 57.2181 N)	ပ	12	0.0020	0.0005		31.11	81.9434	Z	0.0	
14 0.0013 0.0009 37.153 81.811 N 15 0.0015 0.0006 77.042 36.1448 N 16 0.0024 0.0006 61.978 43.7671 N 17 0.0028 0.0005 15.358 57.2181 N			ပ	13	0.0027	0.0007		40.66		Z	0.0	
15 0.0015 0.0006 77.042 36.1448 N 16 0.0024 0.0006 61.978 43.7671 N 17 0.0028 0.0005 15.358 57.2181 N			ပ	14	0.0013	0.0009		37.153		Z	0.0	
16 0.0024 0.0006 61.978 43.7671 N 17 0.0028 0.0005 15.358 57.2181 N			O	15	0.0015	0.0006		77.042		Z	0.0	
17 0.0028 0.0005 15.358 57.2181 N			O	16	0.0024	0.0006		61.978		Z	0.0	
			O	17	0.0028	0.0005		15.358		Z	0.0	

		O	18	0.0017	0.0011		59.92	19.8683	Z	0.0	
		ပ	19								
		ပ	20								
Averages				0.0029	0.0008	0.0024	0.0024 38.8044	54.6825		1.4	
		a	1	0.0055	9000'0	0.0007	23.035	65.8529	Z	3.0	
		Q	2	0.0017	0.0004	0.0004	19.519	21.8301	Z	3.0	
		Ω	က	0.0064	0.0009	0.0006	45.517	83.7984	Z	3.0	
		Ω	4	0.0071	0.0011	0.0008	49.776	41.0438	Z	2.0	
			5	0.0034	0.0013	6000.0	22.187	25.1347	Z	3.0	
		Q	9	0.0040	9000'0	0.0043	48.635	41.6834	Z	3.0	
		Q	2	0.0038	0.0004	0.0015	71.021	55.5321	Z	3.0	
		Ω	8	0.0065	0.0005	0.0018	57.689	45.0458	Z	3.0	
		Ω	6	0.0039	0.0012	0.0019	82.108	35.6951	Z	3.0	
	1.56 mg/L S ²⁻		10	0.0035	6000.0	0.0056	32.004	28.7209	Z	3.0	
	2.8 mg/L Fe	Ω	11	0.0032	0.0008	9000'0	33.429	18.4545	Z	2.0	
	1	Q	12	0.0017	0.0008	0.0005	49.835	38.484	Z	3.0	
		Q	13	0.0021	0.0005		35.69	12.4999	Z	0.0	
		Q	14	0.0034	0.0003		46.231	58.203	Z	0.0	
		Ω	15	0.0030	6000.0		27.797	28.1251	Z	0.0	
			16	0.0023	0.0012		48.493	85.2949	Z	0.0	
		Q	17	0.0013	0.0010		155.87	81.5897	Z	0.0	
		Ω	18								
		Q	19								
			20								
Averages				0.0037	0.0008	0.0016	49.9316	0.0016 49.9316 45.1170		2.0	

FEL

			7MI	IMAM01-00428 - Endnoint Data Summary	- Fndnoint I	Jata Summ	2))	
								Per Replicate	9						
		7 .7			Mesocotyl			Mean	Mean	Mean	Mean	Mean	Mean	Phytotox:	:xo
		Seed	Activation	Emerged	ence	Survival	Survival	Length	Weight	Length	Weight	Weight	Free	Appearance	ınaı
Treatment	Rep	(n)	(%)	(n)	(%)	(u)	(%)	(mm)	(g)	(mm)	(g)	(g)	(n)	(u)	(%)
	٧	40	100.0	5	12.5	5.0	100.0	40.5	0.0007	21.3	0.0019	0.0016	0.2	0	0.0
	а	40	100.0	4	10.0	4.0	100.0	29.4	0.0010	26.6	0.0027	0.0007	0.3	0	0.0
7 80 ms/l Sulfide 0 8 ms/l Fe	ပ	40	100.0	5	12.5	5.0	100.0	49.8	0.0008	35.9	0.0013	0.0019	9.0	0	0.0
	Ω	40	100.0	5	12.5	5.0	100.0	34.8	0.0007	20.3	0.0021	0.0018	0.2	0	0.0
	Wean:	40	100	4.8	11.9	4.8	100.0	38.6	0.0008	26.0	0.0020	0.0015	0.3	0	0.0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	4.37	0.0001	3.58	0.0003	0.0003	0.1	0.0	0.0
	A	40	100.0	18	45.0	18.0	100.0	40.9	600000	60.4	0.0052	0.0006	9.0	0	0.0
	В	40	100.0	19	47.5	19.0	100.0	35.4	0.0008	49.2	0.0041	0.0015	9.0	0	0.0
0.000	ပ	40	100.0	18	45.0	18.0	100.0	46.0	0.0010	54.3	0.0038	0.0017	0.3	0	0.0
1.3.7 (1.4) 2.8 III g/L e	□	40	100.0	18	45.0	18.0	100.0	36.9	6000:0	39.7	0.0051	0.0027	0.3	0	0.0
	Mean:	40	100	18.3	45.6	18.3	100	39.8	0.0009	50.9	0.0046	0.0016	0.5	0.0	0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	2.36	0.0000	4.38	0.0003	0.0004	0.1	0.00	0.0
	٧	40	100.0	19	47.5	19.0	100.0	40.3	0.0010	60.3	0.0038	0.0032	0.2	0	0.0
	а	40	100.0	18	45.0	18.0	100.0	47.6	6000.0	40.5	0.0046	0.0020	0.5	0	0.0
0.3 mg// Sulfide 2.8 mg// Fe	ပ	40	100.0	19	47.5	19.0	100.0	57.2	600000	39.6	0.0035	0.0009	1.3	0	0.0
	۵	40	100.0	18	45.0	18.0	100.0	46.2	6000.0	38.5	0.0030	0.0012	1.1	0	0.0
	Mean:	40	100	18.5	46.3	18.5	100	47.8	0.0009	44.7	0.0037	0.0018	0.8	0	0
	SEM:	0.0	0.0	0.29	0.72	0.29	0.0	3.50	0.0000	5.21	0.0003	0.0005	0.3	0.0	0.0
	٧	40	100.0	17	42.5	17.0	100.0	42.8	0.0008	62.4	0.0041	0.0019	1.0	0	0.0
	В	40	100.0	17	42.5	17.0	100.0	42.8	0.0008	60.3	0.0055	0.0048	0.6	0	0.0
1 56 mail Sulfide 2 8 mail Fe	ပ	40	100.0	18	45.0	18.0	100.0	54.7	0.0008	38.8	0.0029	0.0024	1.4	0	0.0
	۵	40	100.0	17	42.5	17.0	100.0	45.1	0.0008	49.9	0.0037	0.0016	2.0	0	0.0
	Mean:	40	100	17.3	43.1	17.3	100	46.4	0.0008	52.9	0.0040	0.0027	1.2	0.0	0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	2.82	0.0000	5.42	0.0005	2000'0	0.3	00.00	0.0

Takedown Data

Client/Project-WO No: SQME01-00428

							Dried Leaf	Shoot	Root	Phytotoxicity	Free	
	Tech	Treatment	Rep		Shoot	Root	Biomass	Length	Length	(Y or N)	Leaf	Comments
Date	Initials		è Š	٩.	Wt (g)	Wt (g)	Wt (g)	(mm)	(mm)		No.	
			A	1	0.0058	0.0013	0.0031	24.0925	46.1863	Z	3.0	
			Α	2	0.0050	0.0006		81.5954	63.9586	Z	0.0	
			А	3	0.0039	0.0010		52.5120	53.8337	Ν	0.0	
			А	4	0.0028	0.0013		45.7858	88.0574	N	0.0	
			А	2	0.0024	0.0012		35.8193	46.2956	N	0.0	
			Α	9	0.0021	0.0004		33.2250	56.4758	Ν	0.0	
			A	7	0.0020	0.0009		41.7537	54.0704	Z	0.0	
			Α	8	0.0043	9000.0		38.4893	33.2415	N	0.0	
			А	6	0.0042	9000'0		20.6557	33.059	Ν	0.0	
		$3.12 \mathrm{mg/L} \mathrm{S}^2$	٧	10	0.0099	6000'0		32.4739	16.6314	N	0.0	
		2.8 mg/L Fe	Α	11	0.0030	0.0002		80.9596	34.361	N	0.0	
)	∢	12	0.0035	0.0003		35.8939	78.8453	Z	0.0	
			Α	13	0.0045	9000'0		104.7522	46.1526	Ν	0.0	
			Α	14	0.0027	0.0007		80.0043	37.9848	N	0.0	
			Α	15	0.0044	9000'0		53.5902	69.2245	Ν	0.0	
			Α	16	0.0034	6000.0		49.0154	48.078	N	0.0	
			Α	17								
			А	18								
			Α	19								
			Α	20								
Averages					0.0040	8000'0	0.0031	50.6636	50.4035		0.2	
			В	_	0.0025	0.0012	0.0021		35.0396	Z	3.0	
			В	2	0.0078	0.0010	0.0024	50.5231	40.7955	Z	3.0	
			В	3	0.0032	0.0004		22.8929	86.6394	Ν	0.0	
			В	4	0.0098	6000.0		29.2149	40.5775	N	0.0	
			В	S	0.0033	0.0003		29.7976	59.461	Z	0.0	
			В	9	0.0082	0.0005		27.7391		Z	0.0	
			В	7	0.0041	0.0004		82.3695	37.2621	N	0.0	
			В	8	0.0020	0.0003		25.3566		N	0.0	
			В	6	0.0060	0.0004		114.616	21.9315	Ν	0.0	
		$3.12 \mathrm{mg/L} \mathrm{S}^{2-}$	В	10	0.0078	6000.0		73.1348	29.1302	Z	0.0	

0.0	0.0	0.0	0.0	0.0						0.4	2.0	2.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					9.0	3.0	3.0	3.0	2.0	0.0	0.0	0.0	0.0
z	Z	Z	Z	Z							Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z						Z	Z	Z	Z	Z	Z	Z	Z
52.6096	22.0366	47.5346	25.7399	32.3611						39.7870	ı	ı	36.5438	83.006	24.6456	73.5461		50.1408	44.676	47.1643	38.7955	17.815	61.9465	10.1408		48.5433					54.5940	44.1795	66.8449	53.8574		l	41.9627	45.6644	24.3838
23.1567	45.7343	32.524	77.4703	106.786						50.7754	25.9654	18.1148	15.4083	21.5039	48.1556	34.7162	63.5173	23.9992	34.642	49.8422	19.5484	41.1743	66.9811	119.711	31.3759	58.8373					42.0933	20.595	30.8834	28.2344	28.1287	34.4189	104.053	37.2378	63.6369
										0.0023	0.0010	0.0015	0.0018	0.0003																	0.0012	0:0030	0.0021	6000.0	0.0050				
0.0012	0.0015	0.0017	0.0002	0.0008						0.0008	0.0011	9000.0	0.0005	0.0013	0.0007	0.0005	9000'0	6000.0	0.0012	0.0018	0.0016	0.0012	0.0011	0.0005	0.0003	0.0004					6000'0	0.0008	0.0011	9000:0	0.0005	9000.0	0.0013	0.0012	0.0010
0.0038	0.0075	0.0031	0.0031	0.0032						0.0050	0.0064	0.0055	0.0037	0.0059	0.0055	0.0042	0.0050	0.0055	0.0069	0.0047	0.0130	0.0043	0.0032	0.0044	0.0031	0.0024					0.0052	0.0058	0.0075	0.0066	0.0059	0.0052	0.0038	0.0044	0.0066
11	12	13	14	15	16	17	18	19	20		1	2	က	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20		1	2	က	4	2	9	7	8
Δ	Ш	m	М	М	М	m	m	Δ	മ		O	O	O	O	O	ပ	O	O	O	O	ပ	ပ	O	O	O	O	ပ	ပ	O	O							□		
2.8 ma/L Fe)																			3.12 mg/L S ²⁻	2.8 mg/L Fe)																	
										Averages																					Averages								

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					0.7	2.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0											0.4	1.0	0.0	0.0	0.0	0.0	0.0
Z	Z	Z	Z	Z	Z	Z	z						Z	Z	Z	z	Z	Z	Z	Z	Z	Z												Z	Z	Z	z	Z	Z
31.3165	41.9704	44.6053	56.9806	ı	23.9898	63.1686						44.5893	20.9019	17.3484	13.8559	43.0734	54.573		24.299	51.299	37.304	58.695											34.1525	40.687	16.343	26.489	49.100	20.782	39.518
22.277	29.1552	36.6092	43.5181	111.662	32.9307	31.4483	63.6361					44.9016	29.6207	33.8007	33.7584	29.2423	66.504	63.738	20.537	17.512	46.847	29.016											37.0576	54.5041	36.4063	19.3161	33.9506	34.684	25.509
												0.0028	0.0034	0.0005	0.0002																		0.0014	0.0035					
0.0016	0.0004	0.0004	0.0007	9000.0	9000.0	0.0007	0.0003					0.0008	0.0008	9000'0	0.0004	0.0005	9000'0	0.0007	0.0009	0.0010	0.0012	0.0004											0.0007	0.0013	0.0015	0.0018	0.0005	0.0003	0.0002
0.0031	0.0043	0.0056	0.0042	0.0031	0.0044	0.0025	0.0033					0.0048	0.0057	0.0051	0900'0	0.0026	0.0028	0.0031	0.0027	0.0021	0.0013	0.0017											0.0033	0.0013	0.0061	0.0015	0.0049	0.0032	0.0033
ნ	10	11	12	13	14	15	16	17	18	19	20		1	2	3	4	9	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20		1	2	3	4	5	9
		□				△	□						⋖	∢	∢	∢	٧	٧	٧	∢	∢	٨	٨	A	٧	٧	٧	٧	٧	∢	∢	∢		В	М	ш	ш	М	М
	$3.12 \mathrm{mg/L} \mathrm{S}^{2}$	2.8 mg/L Fe)																			$7.8 \mathrm{mg/L}\mathrm{S}^2$	2.8 mg/L Fe																
												Averages																					Averages						

0.0	0.0	0.0	0.0	0.0	0.0									0.1	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0											0.3	0.0	0.0	0.0	0.0
Z	Z	Z	z	Z	z										Z	z	Z	Z	Z	Z	Z	Z	Z	Z												z	Z	Z	Z
20.662		ı			23.013									34.7591	14.9529						ı				l										l`′	l	23.803		ll
119.775	30.837	63.953	27.514	93.148	34.427									47.8353			53.2869	36.647	54.035	46.342	32.722	66.314	44.672	23.609												19.2118	19.8376	50.1205	23.3101
														0.0035	0.0017	0.0001																			0.000				
0.0004	0.0003	0.0011	0.0010	6000.0	0.0008									8000'0	0.0013	0.0011	0.0009	9000.0	9000.0	0.0003	0.0009	0.0002	6000'0	0.0012											0.0008	0.0013	0.0014	0.0005	0.0003
0.0045	0.0045	0900'0	0.0028	0.0021	0.0014									0.0035	0.0031	0.0043	0.0038	0.0053	0.0033	0.0025	0.0029	0.0021	0.0012	0.0019											0.0030	0.0025	0.0023	0.0045	0.0021
7	8	6	10	11	12	13	14	15	16	17	18	19	20		1	2	3	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20		1	2	3	4
<u>m</u>	m	ш	Ш	М	Δ	Ш	മ	Ш	Ш	Ш	m	മ	В		O	O	ပ	ပ	ပ	ပ	ပ	ပ	ပ	O	O	ပ	O	O	O	O	ပ	ပ	O	U			□		
			7.8 ma/L S ²⁻	2.8 mg/L Fe)																			7.8 mg/L S ²⁻	2.8 mg/L Fe)													
														Averages																					Averages				

0.0	0.0	0.0	0.0	0.0	0.0											0.0	1.0	1.0	1.0	1.0	0.0																8.0	1.0	0.0
z	z	Z	z	z	z												≻	>	У	X	>																	X	X
47.052	37.573	22.712	41.699	19.345	20.568											32.3692	32.0717	27.4266	20.2585	32.9657	29.713																28.4870	40.7641	35.1991
45.078	27.691	37.185	21.118	39.655	43.194											32.6400			17.6397		9.380																19.8731	13.7317	₩
																#DIV/0i	0.0010	0.0013	0.0034	0.0002																	0.0015	0.0011	
0.0001	0.0002	9000'0	0.0005	2000.0	0.0003											9000'0	0.0010	0.0007	0.0003	0.0002	0.0004																0.0005	0.0005	0.0007
0.0022	0.0046	0.0039	0.0026	0.0023	0.0025											0.0030	0.0020	0.0043	0.0002	6000'0	0.0007																0.0016	0.0019	0.0021
2	9	2	8	6	10	7	12	13	14	15	16	17	18	19	20		-	2	3	4	2	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20		_	2
																	∢	∢	A	∢	∢	∢	۷	⋖	∢	∢	⋖	٧	٧	⋖	∢	∢	∢	∢	∢	⋖		В	Δ
					7.8 mg/L S ²⁻	2.8 mg/L Fe)																			HS-1 (1:4)	100 mg/L BA												
																Averages																					Averages		

		-	(0.50	,	Ī	040040	0.4000		ď	
		מ	n	U.UU.U	0.0004		24.3873	34.8623	X	n'n	
		m	4	0.0012	0.0003		17.1556	٦	Y	0.0	
		В	5	0.0005	0.0012		11.494	25.508	Υ	0.0	
		В	9								
		В	7								
		В	8								
		В	6								
	HS-1 (1:4)	В	10								
	100 mg/L BA	В	11								
		В	12								
		В	13								
		Ш	14								
		В	15								
		В	16								
		В	17								
		В	18								
		В	19								
		В	20								
Averages				0.0013	9000'0	0.0011	16.6496	40.1145		0.2	
		၁	1	0.0032	2000'0	0.0015	17.4098		Т	1.0	
		O	2	0.0008	60000'0		21.2816		У	0.0	
		ပ	က	0.0012	0.0013		14.0953		≻	0.0	
		O	4	0.0021	0.0033		26.117		>	0.0	
		O	5								
		ပ	9								
		O	7								
		O	8								
		O	6								
	HS-1 (1:4)	S	10								
	100 mg/L BA	O	11								
		O	12								
		ပ	13								
		O	14								
		ပ	15								
		O	16								
		O	17								
		ပ	18								
		O	19								
		O	20								
Averages				0.0018	0.0016	0.0015		19.7258 23.5810		0.3	
ļ		l	1	1	1			J		1	

1.0	1.0	0.0																		0.7
>	>	У																		
31.0403	28.8181	40.6013																		33.4866
0.0006 17.8038	21.3231	25.584 40.6013																		0.0007 21.5703 33.4866
9000.0	2000.0																			0.0007
0.0032 0.0005	9000'0	2000.0																		0.0030 0.0006
0.0032	0.0043	0.0014																		0:00:0
_	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	
									HS-1 (1:4)	100 mg/L BA	1									
																				Averages

FEL

			2	iiviAwu1-uu4z8 - Endpoint Data Summary	1 III III II	Data sullill	ı	Per Renlicate	9	ı	ı			ı	
					I	Ī	1		<u> </u>	Ī	Ī	Ī	Ī		
					Mesocotyl			Mean	Mean	Mean	Mean	Mean	Mean	Phytotox:	× ×
		Activated Seed	Activation	Mesocotyl	Emerg-	Seedling	Survival	Root	Root	Shoot	Shoot	Dried Leaf Weight	Free	Appearance	nal
Treatment	Rep	(u)	(%)	(n)	(%)	(n)	(%)	(mm)	(g)	(mm)	(g)	(g)	(u)	(u)	(%)
	Α	40	100.0	16	40.0	16.0	100.0	50.4	0.0008	50.7	0.0040	0.0031	0.2	0	0.0
	В	40	100.0	15	37.5	15.0	100.0	39.8	0.0008	50.8	0.0050	0.0023	0.4	0	0.0
0 10 m 21 0 m 21 0 m 22 0 0 0 m 22 0 0 0 0 0 0 0 0 0 0 0	ပ	40	100.0	16	40.0	16.0	100.0	54.6	6000.0	42.1	0.0052	0.0012	9.0	0	0.0
5. 12 mg/c Samae 2.0 mg/c l e	О	40	100.0	16	40.0	16.0	100.0	44.6	0.0008	44.9	0.0048	0.0028	7.0	0	0.0
	Mean:	40	100	15.8	39.4	15.8	100.0	47.3	0.0008	47.1	0.0048	0.0023	0.5	0	0.0
	SEM:	0.0	0.0	0.25	0.63	0.25	0.0	3.25	0.0000	2.16	0.0003	0.0004	0.1	0.0	0.0
	٧	40	100.0	10	25.0	10.0	100.0	34.2	0.0007	37.1	0.0033	0.0014	0.4	0	0.0
	В	40	100.0	12	30.0	12.0	100.0	34.8	0.0008	47.8	0.0035	0.0035	0.1	0	0.0
7 80 mg/l Sulfide 2 8 mg/l Fe	ပ	40	100.0	10	25.0	10.0	100.0	36.6	0.0008	41.9	0.0030	0.0009	0.3	0	0.0
	٥	40	100.0	10	25.0	10.0	100.0	32.4	0.0006	32.6	0.0030		0.0	0	0.0
	Mean:	40	100	10.5	26.3	10.5	100	34.5	0.0007	39.9	0.0032	0.0019	0.2	0.0	0
	SEM:	0.0	0.0	0.50	1.25	0.50	0.0	0.87	0.0001	3.26	0.0001	0.0008	0.1	0.00	0.0
	А	40	100.0	5	12.5	5.0	100.0	28.5	0.0005	19.9	0.0016	0.0015	8.0	5	100.0
	В	40	100.0	5	12.5	5.0	100.0	40.1	9000:0	16.6	0.0013	0.0011	0.2	5	100.0
HS.1 (1:4) 100 ma/l BA	ပ	40	100.0	4	10.0	4.0	100.0	23.6	0.0016	19.7	0.0018	0.0015	0.3	4	100.0
	٥	40	100.0	3	7.5	3.0	100.0	33.5	0.0006	21.6	0.0030	0.0007	0.7	3	100.0
	Mean:	40	100	4.3	10.6	4.3	100	31.4	0.0008	19.5	0.0019	0.0012	0.5	4.25	100
	SEM:	0.0	0.0	0.48	1.20	0.48	0.0	3.53	0.0002	1.02	0.0004	0.0002	0.1	0.5	0.0

肥

					Mediar	Median Emergence Time (ime (d)				
	HS-1	100 mg/L BA	0.3 mg/L S ²⁻ 0.8 mg/L Fe	1.56 mg/L S ²⁻ 0.8 mg/L Fe	3.12 mg/L S ²⁻ 0.8 mg/L Fe	7.8 mg/L S ²⁻ 0.8 mg/L Fe	HS-1 2.8 mg/L Fe	0.3 mg/L S ²⁻ 2.8 mg/L Fe	1.56 mg/L S ²⁻ 2.8 mg/L Fe	3.12 mg/L S ^{2.} 2.8 mg/L Fe	7.8 mg/L S ²⁻ 2.8 mg/L Fe
Rep A	6	>21	6	10	>21	<21	10	6	6	6	>21
Rep B	10	>21	10	10	>21	<21	6	6	10	10	20
Rep C	6	>21	10	6	>21	<21	6	6	6	10	>21
Rep D	6	>21	6	10	>21	<21	6	10	10	10	>21
Median	6	>21	9.5	10	>21	>21	6	6	9.5	10	>21
MHK	0.3	0	0.3	0.3	0.0	0.0	0.3	0.3	0.3	0.3	0

Descriptive Statistics: Monday, April 02, 2018, 11:18:54 AM

Data source: Emergence in 00428_Stats.JNB

SD10 Emergence Descr

Data source: Emergeno	ce in 00428_Stats.JN	В	SD10 Emer	rgence Desc	r	
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	0.356	0.024	0.012	0.038
100 mg/L BA	4	0	0.075	0.000	0.000	0.000
0.3 mg/L	4	0	0.331	0.024	0.012	0.038
1.56 mg/L	4	0	0.331	0.032	0.016	0.050
3.12 mg/L	4	0	0.206	0.024	0.012	0.038
7.8 mg/L	4	0	0.081	0.013	0.006	0.020
HS-1 2.8	4	0	0.350	0.020	0.010	0.033
0.3 mg/L 2.8	4	0	0.369	0.032	0.016	0.050
1.56 mg/L 2.8	4	0	0.325	0.020	0.010	0.033
3.12 mg/L 2.8	4	0	0.320	0.014	0.007	0.022
7.8 mg/L 2.8	4	0	0.200	0.020	0.010	0.033
Column	Range	Max	Min	Median	25%	75%
HS-1	0.050	0.375	0.325	0.362	0.338	0.375
100 mg/L BA	0.000	0.075	0.075	0.075	0.075	0.075
0.3 mg/L	0.050	0.350	0.300	0.338	0.313	0.350
1.56 mg/L	0.075	0.375	0.300	0.325	0.313	0.350
3.12 mg/L	0.050	0.225	0.175	0.213	0.188	0.225
7.8 mg/L	0.025	0.100	0.075	0.075	0.075	0.088
HS-1 2.8	0.050	0.375	0.325	0.350	0.338	0.362
0.3 mg/L 2.8	0.075	0.400	0.325	0.375	0.350	0.388
1.56 mg/L 2.8	0.050	0.350	0.300	0.325	0.313	0.338
3.12 mg/L 2.8	0.030	0.330	0.300	0.325	0.313	0.328
7.8 mg/L 2.8	0.050	0.225	0.175	0.200	0.188	0.213
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	SWilk W	SWilk Prob
HS-1	-0.855	-1.289	0.283	0.289	0.863	0.272
100 mg/L BA	0.000	-6.000	0	<0.001	0	<0.001
0.3 mg/L	-0.855	-1.289	0.283	0.289	0.863	0.272
1.56 mg/L	1.129	2.227	0.329	0.138	0.895	0.406
3.12 mg/L	-0.855	-1.289	0.283	0.289	0.863	0.272
7.8 mg/L	2.000	4.000	0.441	0.006	0.63	0.001
HS-1 2.8	0.000	1.500	0.25	0.432	0.945	0.683
0.3 mg/L 2.8	-1.129	2.227	0.329	0.138	0.895	0.406
1.56 mg/L 2.8	0.000	1.500	0.25	0.432	0.945	0.683
3.12 mg/L 2.8	-1.813	3.483	0.394	0.03	0.773	0.062
7.8 mg/L 2.8	0.000	1.500	0.25	0.432	0.945	0.683
Column	Sum	Sum of Squares				
HS-1	1.425	0.509				
100 mg/L BA	0.3	0.0225				
0.3 mg/L	1.325	0.441				
1.56 mg/L	1.325	0.442				
3.12 mg/L	0.825	0.172				
7.8 mg/L	0.325	0.0269				
HS-1 2.8	1.4	0.491				
0.3 mg/L 2.8	1.475	0.547				
1.56 mg/L 2.8	1.3	0.424				
3.12 mg/L 2.8	1.28	0.41				
7.8 mg/L 2.8	0.8	0.161				

One Way Analysis of Variance Monday, April 02, 2018, 11:19:33 AM

Data source: Emergence in 00428_Stats.JNB SD10 Emergence -100 BA ANOVA

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks

Monday, April 02, 2018, 11:19:33 AM

Data source: Emergence in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.362	0.331	0.375
0.3 mg/L	4	0	0.338	0.306	0.350
1.56 mg/L	4	0	0.325	0.306	0.362
3.12 mg/L	4	0	0.213	0.181	0.225
7.8 mg/L	4	0	0.075	0.075	0.0938
100 mg/L BA	4	0	0.075	0.075	0.075

H = 20.459 with 5 degrees of freedom. (P = 0.001)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.001)

To isolate the group or groups that differ from the others use a multiple comparison procedure. Multiple Comparisons versus Control Group (Dunnett's Method) :

Comparison	Diff of Ranks	q'	P<0.05
100 mg/L BA vs HS-1	66.5	3.325	Yes
7.8 mg/L v s HS-1	62.5	3.125	Yes
3.12 mg/L vs HS-1	40.5	2.025	No
1.56 mg/L vs HS-1	13	0.65	Do Not Test
0.3 mg/L vs HS-1	12.500	0.625	Do Not Test

Note: The multiple comparisons on ranks do not include an adjustment for ties.

One Way Analysis of Variance Monday, April 02, 2018, 11:20:20 AM

Data source: Emergence in 00428_Stats.JNB SD10 Emergence 0.8 ANOV

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, April 02, 2018, 11:20:20 AM

Data source: Emergence in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.362	0.331	0.375
0.3 mg/L	4	0	0.338	0.306	0.350
1.56 mg/L	4	0	0.325	0.306	0.362
3.12 mg/L	4	0	0.213	0.181	0.225
7.8 mg/L	4	0	0.075	0.075	0.0938

H = 15.687 with 4 degrees of freedom. (P = 0.003)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.003)

To isolate the group or groups that differ from the others use a multiple comparison procedure. Multiple Comparisons versus Control Group (Dunnett's Method) :

Comparison	Diff of Ranks	q'	P<0.05
7.8 mg/L vs HS-1	56.5	3.377	Yes
3.12 mg/L vs HS-1	40.5	2.420	No
1.56 mg/L vs HS-1	13	0.777	Do Not Test
0.3 mg/L vs HS-1	12.500	0.747	Do Not Test

Note: The multiple comparisons on ranks do not include an adjustment for ties.

One Way Analysis of Variance Monday, April 02, 2018, 11:20:53 AM

Data source: Emergence in 00428 Stats.JNB SD10 Emergence 2.8 ANOV

Normality Test (Shapiro-Wilk) Passed (P = 0.110)

Equal Variance Test: Passed (P = 0.912)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0	0.350	0.0204	0.0102
0.3 mg/L 2.8	4	0	0.369	0.0315	0.0157
1.56 mg/L 2.8	4	0	0.325	0.0204	0.0102
3.12 mg/L 2.8	4	0	0.320	0.0135	0.00677
7.8 mg/L 2.8	4	0	0.200	0.0204	0.0102
Source of Variation	DF	SS	MS	F	Р
Between Groups	4	0.0698	0.0174	35.987	< 0.001
Residual	15	0.00727	0.000485		
Total	19	0.077			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	Р	P<0.050
HS-1 2.8 vs. 7.8 mg/L 2.8	0.15	9.637		Yes
HS-1 2.8 vs. 3.12 mg/L 2.8	0.03	1.927		No
HS-1 2.8 vs. 1.56 mg/L 2.8	0.025	1.606		Do Not Test
HS-1 2.8 vs. 0.3 mg/L 2.8	0.019	1.205		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

t-test Monday, April 02, 2018, 11:22:40 AM

Data source: Emergence in 00428_Stats.JNB SD10 Emerg HS-1 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.427)

Equal Variance Test: Passed (P = 0.537)

Group Name Ν Missing Std Dev SEM Mean HS-1 0.356 0.0239 0.012 4 0 HS-1 2.8 4 0 0.35 0.0204 0.0102

Difference 0.00625

t = 0.397 with 6 degrees of freedom. (P = 0.705)

95 percent confidence interval for difference of means: -0.0322 to 0.0447

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference

Power of performed test with alpha = 0.050: 0.050

The power of the performed test (0.050) is below the desired power of 0.800.

Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Monday, April 02, 2018, 11:24:22 AM

Data source: Emergence in 00428_Stats.JNB SD10 Emerg 0.3 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.408)

Equal Variance Test: Passed (P = 1.000)

Group Name Ν Missing Std Dev SEM Mean 0.3 mg/L 0.331 0.0239 0.012 4 0 0.3 mg/L 2.84 0 0.369 0.0315 0.0157

Difference -0.0375

t = -1.897 with 6 degrees of freedom. (P = 0.107)

95 percent confidence interval for difference of means: -0.0859 to 0.0109

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference

Power of performed test with alpha = 0.050: 0.267

The power of the performed test (0.267) is below the desired power of 0.800.

Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Monday, April 02, 2018, 11:24:58 AM

Data source: Emergence in 00428_Stats.JNB SD10 Emerg 1.56 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.517)

Equal Variance Test: Passed (P = 0.670)

Group Name	N	Missing	Mean	Std Dev	SEM
1.56 mg/L	4	0	0.331	0.0315	0.0157
1.56 mg/L 2.8	4	0	0.325	0.0204	0.0102

Difference 0.0063

t = 0.333 with 6 degrees of freedom. (P = 0.750)

95 percent confidence interval for difference of means: -0.0396 to 0.0521

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.750).

Power of performed test with alpha = 0.050: 0.050

The power of the performed test (0.050) is below the desired power of 0.800.

Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Monday, April 02, 2018, 11:25:34 AM

Data source: Emergence in 00428_Stats.JNB SD10 Emerg 3.12 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.331)

Equal Variance Test: Passed (P = 0.240)

Group Name Ν Missing Mean Std Dev SEM 3.12 mg/L 4 0 0.206 0.0239 0.012 3.12 mg/L 2.84 0 0.32 0.0135 0.00677

Difference -0.1140

t = -8.273 with 6 degrees of freedom. (P = <0.001)

95 percent confidence interval for difference of means: -0.147 to -0.0801

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

t-test Monday, April 02, 2018, 11:26:00 AM

Data source: Emergence in 00428_Stats.JNB SD10 Emerg 7.8 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.374)

Equal Variance Test: Passed (P = 0.537)

Group Name Ν Missing Mean Std Dev SEM 7.8 mg/L 4 0 0.0813 0.0125 0.00625 7.8 mg/L 2.8 4 0 0.200 0.0204 0.0102

Difference -0.1190

t = -9.922 with 6 degrees of freedom. (P = <0.001)

95 percent confidence interval for difference of means: -0.148 to -0.0895

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

t-test Monday, April 02, 2018, 11:26:25 AM

Data source: Emergence in 00428_Stats.JNB SD10 Emerg HS-1vsBA t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.089)

Equal Variance Test: Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 11:26:25 AM

Data source: Emergence in 00428_Stats.JNB

Group	N	Missing	Median		Median		25%	75%
HS-1		4	0	0.362	0.331	0.375		
100 mg/L BA		4	0	0.075	0.075	0.075		

Mann-Whitney U Statistic= 0.000

T = 26.000 n(small) = 4 n(big) = 4 P(est.) = 0.020 P(exact) = 0.029

The difference in the median values between the two groups is greater than would be expected by chance; there is a statistically significant difference (P = 0.029)

Descriptive Statistics:	Monday, April 02, 2018, 11:52:01 AM
Descriptive statistics:	11101144,776111 02, 2010, 111021017111

Data source: Phytotoxicity in 00428_Stats.JNB	SD10 Phytotox Descr
---	---------------------

Data source: Phytotoxicity in	INB	SD10 Phytotox Descr				
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	0.000	0.000	0.000	0.000
0.3 mg/L	4	0	0.000	0.000	0.000	0.000
1.56 mg/L	4	0	0.000	0.000	0.000	0.000
3.12 mg/L	4	0	0.000	0.000	0.000	0.000
7.8 mg/L	4	0	0.000	0.000	0.000	0.000
HS-1 2.8	4	0	0.000	0.000	0.000	0.000
0.3 mg/L 2.8	4	0	0.000	0.000	0.000	0.000
1.56 mg/L 2.8	4	0	0.000	0.000	0.000	0.000
3.12 mg/L 2.8	4	0	0.000	0.000	0.000	0.000
7.8 mg/L 2.8	4	0	0.000	0.000	0.000	0.000
100 mg/L BA	4	0	1.000	0.000	0.000	0.000
Column	Range	Max	Min	Median	25%	75%
HS-1	0.000	0.000	0.000	0.000	0.000	0.000
0.3 mg/L	0.000	0.000	0.000	0.000	0.000	0.000
1.56 mg/L	0.000	0.000	0.000	0.000	0.000	0.000
3.12 mg/L	0.000	0.000	0.000	0.000	0.000	0.000
7.8 mg/L	0.000	0.000	0.000	0.000	0.000	0.000
HS-1 2.8	0.000	0.000	0.000	0.000	0.000	0.000
0.3 mg/L 2.8	0.000	0.000	0.000	0.000	0.000	0.000
1.56 mg/L 2.8	0.000	0.000	0.000	0.000	0.000	0.000
3.12 mg/L 2.8	0.000	0.000	0.000	0.000	0.000	0.000
7.8 mg/L 2.8	0.000	0.000	0.000	0.000	0.000	0.000
100 mg/L BA	0.000	1.000	1.000	1.000	1.000	1.000
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	SWilk W	SWilk Prob
Column HS-1	Skewness 0.000	Kurtosis -6.000	K-S Dist.	K-S Prob. <0.001	swilk w 0	SWilk Prob <0.001
HS-1	0.000	-6.000	0 0 0	<0.001	0	<0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L	0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000	0 0 0 0	<0.001 <0.001	0 0 0	<0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L	0.000 0.000 0.000	-6.000 -6.000 -6.000	0 0 0 0	<0.001 <0.001 <0.001	0 0 0 0	<0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8	0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000	0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8	0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000	0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000	0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000	0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000	0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 Sum of Squares	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1 0.3 mg/L	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1 0.3 mg/L 1.56 mg/L	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sum 0 0	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 Sum of Squares 0 0	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 3.12 mg/L	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sum 0 0	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 Sum of Squares 0 0 0	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L 7.8 mg/L	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sum 0 0 0	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 0 0 0	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 4.58 mg/L HS-1 2.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sum 0 0 0 0	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 0 0 0 0	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L 4.56 mg/L 3.12 mg/L 7.8 mg/L 6.3 mg/L 7.8 mg/L 7.8 mg/L 8.3 mg/L 9.3 mg/L	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 0 0 0 0 0	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 1.56 mg/L 3.15 mg/L 1.56 mg/L 3.15 mg/L 1.56 mg/L 3.15 mg/L HS-1 2.8 0.3 mg/L 2.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 0 0 0 0 0 0 0	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 3.12 mg/L 2.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 2.8 1.56 mg/L 2.8 3.12 mg/L 2.8 7.8 mg/L 2.8 100 mg/L BA Column HS-1 0.3 mg/L 1.56 mg/L 3.12 mg/L 7.8 mg/L HS-1 2.8 0.3 mg/L 1.56 mg/L 3.15 mg/L 1.56 mg/L 3.15 mg/L 1.56 mg/L 3.15 mg/L HS-1 2.8 0.3 mg/L 2.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 -6.000 0 0 0 0 0 0 0	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0 0 0 0 0 0 0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

One Way Analysis of Variance Monday, April 02, 2018, 11:52:50 AM

Data source: Phytotoxicity in 00428 Stats.JNB SD10 Phytotox -100 BA ANOVA

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, April 02, 2018, 11:52:50 AM

Data source: Phytotoxicity in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.000	0.000	0.000
0.3 mg/L	4	0	0.000	0.000	0.000
1.56 mg/L	4	0	0.000	0.000	0.000
3.12 mg/L	4	0	0.000	0.000	0.000
7.8 mg/L	4	0	0.000	0.000	0.000
100 mg/L BA	4	0	1.571	1.571	1.571

H = 23.000 with 5 degrees of freedom. (P = <0.001)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

To isolate the group or groups that differ from the others use a multiple comparison procedure. Multiple Comparisons versus Control Group (Dunnett's Method) :

Comparison	Diff of Ranks	q'	P<0.05
100 mg/L BA vs HS-1	48.000	2.400	No
0.3 mg/L vs HS-1	0.000	0.000	Do Not Test
1.56 mg/L vs HS-1	0.000	0.000	Do Not Test
3.12 mg/L vs HS-1	0.000	0.000	Do Not Test
7.8 mg/L vs HS-1	0.000	0.000	Do Not Test

Note: The multiple comparisons on ranks do not include an adjustment for ties.

One Way Analysis of Variance Monday, April 02, 2018, 11:53:47 AM

Data source: Phytotoxicity in 00428_Stats.JNB SD10 Phytotox 0.8 ANOVA

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, April 02, 2018, 11:53:47 AM

Data source: Phytotoxicity in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.000	0.000	0.000
0.3 mg/L	4	0	0.000	0.000	0.000
1.56 mg/L	4	0	0.000	0.000	0.000
3.12 mg/L	4	0	0.000	0.000	0.000
7.8 mg/L	4	0	0.000	0.000	0.000

H = 0.000 with 4 degrees of freedom. (P = 1.000)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 1.000)

One Way Analysis of Variance Monday, April 02, 2018, 11:54:12 AM

Data source: Phytotoxicity in 00428_Stats.JNB SD10 Phytotox 2.8 ANOVA

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, April 02, 2018, 11:54:12 AM

Data source: Phytotoxicity in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1 2.8	4	0	0.000	0.000	0.000
0.3 mg/L 2.8	4	0	0.000	0.000	0.000
1.56 mg/L 2.8	4	0	0.000	0.000	0.000
3.12 mg/L 2.8	4	0	0.000	0.000	0.000
7.8 mg/L 2.8	4	0	0.000	0.000	0.000

H = 0.000 with 4 degrees of freedom. (P = 1.000)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 1.000)

t-test Monday, April 02, 2018, 11:55:28 AM

Data source: Phytotoxicity in 00428_Stats.JNB SD10 Phytotox HS-1vsBA t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 11:55:28 AM

Data source: Phytotoxicity in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.000	0.000	0.000
100 mg/L BA	4	0	1.571	1.571	1.571

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.013 P(exact) = 0.029

The difference in the median values between the two groups is greater than would be expected by chance; there is a statistically significant difference (P = 0.029)

Descriptive Statistics: Monday, April 02, 2018, 10:51:38 AM

Data source: ET30 in 00428 Stats.JNB

SD10 ET30 Descr

Data source: ET30 in 004	128_Stats.JNB	SJNB SD10 ET30 Descr				
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	9.250	0.500	0.250	0.796
100 mg/L BA	4	0	11.000	0.000	0.000	0.000
0.3 mg/L	4	0	9.500	0.577	0.289	0.919
1.56 mg/L	4	0	9.750	0.500	0.250	0.796
3.12 mg/L	4	0	11.000	0.000	0.000	0.000
7.8 mg/L	4	0	11.000	0.000	0.000	0.000
HS-1 2.8	4	0	9.250	0.500	0.250	0.796
0.3 mg/L 2.8	4	0	9.250	0.500	0.250	0.796
1.56 mg/L 2.8	4	0	9.500	0.577	0.289	0.919
3.12 mg/L 2.8	4	0	9.750	0.500	0.250	0.796
7.8 mg/L 2.8	4	0	11.000	0.000	0.000	0.000
Column	Range	Max	Min	Median	25%	75%
HS-1	1.000	10.000	9.000	9.000	9.000	9.500
100 mg/L BA	0.000	11.000	11.000	11.000	11.000	11.000
0.3 mg/L	1.000	10.000	9.000	9.500	9.000	10.000
1.56 mg/L	1.000	10.000	9.000	10.000	9.500	10.000
3.12 mg/L	0.000	11.000	11.000	11.000	11.000	11.000
7.8 mg/L	0.000	11.000	11.000	11.000	11.000	11.000
HS-1 2.8	1.000	10.000	9.000	9.000	9.000	9.500
0.3 mg/L 2.8	1.000	10.000	9.000	9.000	9.000	9.500
1.56 mg/L 2.8	1.000	10.000	9.000	9.500	9.000	10.000
3.12 mg/L 2.8	1.000	10.000	9.000	10.000	9.500	10.000
7.8 mg/L 2.8	0.000	11.000	11.000	11.000	11.000	11.000
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	swilk w	SWilk Prob
HS-1	2.000	4.000	0.441	0.006	0.63	0.001
100 mg/L BA	0.000	-6.000	0	<0.001	0	<0.001
0.3 mg/L	0.000	-6.000	0.307	0.203	0.729	0.024
1.56 mg/L	-2.000	4.000	0.441	0.006	0.630	0.001
3.12 mg/L	0.000	-6.000	0.000	<0.001	0.000	<0.001
7.8 mg/L	0.000	-6.000	0	<0.001	0	<0.001
HS-1 2.8	2.000	4.000	0.441	0.006	0.63	0.001
0.3 mg/L 2.8	2.000	4.000	0.441	0.006	0.630	0.001
1.56 mg/L 2.8	0.000	-6.000	0.307	0.203	0.729	0.024
3.12 mg/L 2.8	-2.000	4.000	0.441	0.006	0.630	0.001
7.8 mg/L 2.8	0.000	-6.000	0.000	<0.001	0.000	<0.001
Column	Sum	Sum of Squares				
HS-1	37.000	343.000				
100 mg/L BA	44.000	484.000				
0.3 mg/L	38.000	362.000				
1.56 mg/L	39.000	381.000				
3.12 mg/L	44.000	484.000				
7.8 mg/L	44.000	484.000				
HS-1 2.8	37.000	343.000				
0.3 mg/L 2.8	37.000	343.000				
1.56 mg/L 2.8	38.000	362.000				
3.12 mg/L 2.8	39.000	381.000				
7.8 mg/L 2.8	44.000	484.000				

t-test Monday, April 02, 2018, 11:00:52 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 11:00:52 AM

Data source: ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	9.000	9.000	9.750
HS-1 2.8	4	0	9.000	9.000	9.750

Mann-Whitney U Statistic= 8.000

T = 18.000 n(small) = 4 n(big) = 4 P(est.) = 0.849 P(exact) = 1.000

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 1.000)

t-test Monday, April 02, 2018, 11:01:18 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 0.3 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.057)

Equal Variance Test: Passed (P = 0.356)

Group Name	N	Missing	Mean	Std Dev	SEM
0.3 mg/L	4	0	9.500	0.577	0.289
0.3 mg/L 2.8	4	0	9.250	0.500	0.250

Difference 0.250

t = 0.655 with 6 degrees of freedom. (P = 0.537)

95 percent confidence interval for difference of means: -0.684 to 1.184

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.537).

Power of performed test with alpha = 0.050: 0.050

The power of the performed test (0.050) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Monday, April 02, 2018, 11:01:49 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 1.56 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.057)

Equal Variance Test: Passed (P = 0.356)

Group Name	N	Missing	Mean	Std Dev	SEM
1.56 mg/L	4	0	9.750	0.500	0.250
1.56 mg/L 2.8	4	0	9.500	0.577	0.289

Difference 0.250

t = 0.655 with 6 degrees of freedom. (P = 0.537)

95 percent confidence interval for difference of means: -0.684 to 1.184

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.537).

Power of performed test with alpha = 0.050: 0.050

The power of the performed test (0.050) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Monday, April 02, 2018, 11:02:24 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 3.12 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 11:02:24 AM

Data source: ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
3.12 mg/L	4	0	11.000	11.000	11.000
3.12 mg/L 2.8	4	0	10.000	9.250	10.000

Mann-Whitney U Statistic= 0.000

T = 26.000 n(small) = 4 n(big) = 4 P(est.) = 0.018 P(exact) = 0.029

t-test Monday, April 02, 2018, 11:02:41 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 7.8 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 11:02:41 AM

Data source: ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
7.8 mg/L	4	0	11.000	11.000	11.000
7.8 mg/L 2.8	4	0	11.000	11.000	11.000

Mann-Whitney U Statistic= 8.000

T = 18.000 n(small) = 4 n(big) = 4 P(est.) = 1.000 P(exact) = 1.000

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 1.000)

t-test Monday, April 02, 2018, 10:55:27 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1vBA t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 10:55:27 AM

Data source: ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	9.000	9.000	9.750
100 mg/L BA	4	0	11.000	11.000	11.000

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.018 P(exact) = 0.029

t-test Monday, April 02, 2018, 10:56:16 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1v0.3 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.057)

Equal Variance Test: Passed (P = 0.356)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	9.250	0.500	0.250
0.3 mg/L	4	0	9.500	0.577	0.289

Difference -0.250

t = -0.655 with 6 degrees of freedom. (P = 0.537)

95 percent confidence interval for difference of means: -1.184 to 0.684

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.537).

Power of performed test with alpha = 0.050: 0.050

The power of the performed test (0.050) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Monday, April 02, 2018, 10:56:42 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1v1.56 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.522)

Equal Variance Test: Passed (P = 1.000)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	9.250	0.500	0.250
1.56 mg/L	4	0	9.750	0.500	0.250

Difference -0.500

t = -1.414 with 6 degrees of freedom. (P = 0.207)

95 percent confidence interval for difference of means: -1.365 to 0.365

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.207).

Power of performed test with alpha = 0.050: 0.131

The power of the performed test (0.131) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Monday, April 02, 2018, 10:57:08 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1v3.12 t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 10:57:08 AM

Data source: ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	9.000	9.000	9.750
3.12 mg/L	4	0	11.000	11.000	11.000

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.018 P(exact) = 0.029

t-test Monday, April 02, 2018, 10:57:48 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1v7.8 t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 10:57:48 AM

Data source: ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	9.000	9.000	9.750
7.8 mg/L	4	0	11.000	11.000	11.000

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.018 P(exact) = 0.029

t-test Monday, April 02, 2018, 10:58:39 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1 2.8v0.3 2.8

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 10:58:39 AM

Data source: ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1 2.8	4	0	9.000	9.000	9.750
0.3 mg/L 2.8	4	0	9.000	9.000	9.750

Mann-Whitney U Statistic= 8.000

T = 18.000 n(small) = 4 n(big) = 4 P(est.) = 0.849 P(exact) = 1.000

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically

t-test Monday, April 02, 2018, 10:59:11 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1 2.8v1.56 2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.057)

Equal Variance Test: Passed (P = 0.356)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0	9.250	0.500	0.250
1.56 mg/L 2.8	4	0	9.500	0.577	0.289

Difference -0.250

t = -0.655 with 6 degrees of freedom. (P = 0.537)

95 percent confidence interval for difference of means: -1.184 to 0.684

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.537).

Power of performed test with alpha = 0.050: 0.050

The power of the performed test (0.050) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Monday, April 02, 2018, 10:59:35 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1 2.8v3.12 2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.522)

Equal Variance Test: Passed (P = 1.000)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0	9.250	0.500	0.250
3.12 mg/L 2.8	4	0	9.750	0.500	0.250

Difference -0.500

t = -1.414 with 6 degrees of freedom. (P = 0.207)

95 percent confidence interval for difference of means: -1.365 to 0.365

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.207).

Power of performed test with alpha = 0.050: 0.131

The power of the performed test (0.131) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Monday, April 02, 2018, 11:00:02 AM

Data source: ET30 in 00428_Stats.JNB SD10 ET30 HS-1 2.8v7.8 2.8

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Monday, April 02, 2018, 11:00:02 AM

Data source: ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1 2.8	4	0	9.000	9.000	9.750
7.8 mg/L 2.8	4	0	11.000	11.000	11.000

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.018 P(exact) = 0.029

Descriptive Statistics: Wednesday, April 18, 2018, 11:10:57 AM

Data source: Emergence in 00428_Stats.JNB

SD21 Emergence Descr

Data source. Efficigence	111 00426_3tats.JN	Ь	3DZI LIIICI	gence Desc	.1	
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	0.444	0.032	0.016	0.050
0.3 mg/L	4	0	0.444	0.013	0.006	0.020
1.56 mg/L	4	0	0.400	0.020	0.010	0.033
3.12 mg/L	4	0	0.250	0.029	0.014	0.046
7.8 mg/L	4	0	0.119	0.013	0.006	0.020
HS-1 2.8	4	0	0.456	0.013	0.006	0.020
0.3 mg/L 2.8	4	0	0.463	0.014	0.007	0.023
1.56 mg/L 2.8	4	0	0.431	0.013	0.006	0.020
3.12 mg/L 2.8	4	0	0.394	0.013	0.006	0.020
7.8 mg/L 2.8	4	0	0.263	0.025	0.013	0.040
100 mg/L BA	4	0	0.106	0.024	0.012	0.038
Column	Range	Max	Min	Median	25%	75%
HS-1	0.075	0.475	0.400	0.450	0.425	0.463
0.3 mg/L	0.025	0.450	0.425	0.450	0.438	0.450
1.56 mg/L	0.050	0.425	0.375	0.400	0.388	0.412
3.12 mg/L	0.050	0.275	0.225	0.250	0.225	0.275
7.8 mg/L	0.025	0.125	0.100	0.125	0.113	0.125
HS-1 2.8	0.025	0.475	0.450	0.450	0.450	0.463
0.3 mg/L 2.8	0.025	0.475	0.450	0.463	0.450	0.475
1.56 mg/L 2.8	0.025	0.450	0.425	0.425	0.425	0.438
3.12 mg/L 2.8	0.025	0.400	0.375	0.400	0.388	0.400
7.8 mg/L 2.8	0.050	0.300	0.250	0.250	0.250	0.275
100 mg/L BA	0.050	0.125	0.075	0.113	0.088	0.125
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	swilk w	SWilk Prob
HS-1	-1.129	2.227	0.329	0.138	0.895	0.406
0.3 mg/L	-2.000	4.000	0.441	0.006	0.63	0.001
1.56 mg/L	0.000	1.500	0.25	0.432	0.945	0.683
3.12 mg/L	0.000	-6.000	0.307	0.203	0.729	0.024
7.8 mg/L	-2.000	4.000	0.441	0.006	0.63	0.001
HS-1 2.8	2.000	4.000	0.441	0.006	0.63	0.001
0.3 mg/L 2.8	0.000	-6.000	0.307	0.203	0.729	0.024
1.56 mg/L 2.8	2.000	4.000	0.441	0.006	0.63	0.001
3.12 mg/L 2.8	-2.000	4.000	0.441	0.006	0.63	0.001
7.8 mg/L 2.8	2.000	4.000	0.441	0.006	0.63	0.001
100 mg/L BA	-0.855	-1.289	0.283	0.289	0.863	0.272
Column	Sum	Sum of Squares				
HS-1	1.775	0.791				
0.3 mg/L	1.775	0.788				
1.56 mg/L	1.600	0.641				
3.12 mg/L	1.000	0.253				
7.8 mg/L	0.475	0.0569				
HS-1 2.8	1.825	0.833				
0.3 mg/L 2.8	1.850	0.856				
1.56 mg/L 2.8	1.725	0.744				
3.12 mg/L 2.8	1.575	0.621				
7.8 mg/L 2.8	1.050	0.277				
100 mg/L BA	0.425	0.0469				

One Way Analysis of Variance Wednesday, April 18, 2018, 11:18:42 AM

Data source: Emergence in 00428 Stats.JNB SD21 Emergence -100 BA ANOVA

(P = 0.098)Normality Test (Shapiro-Wilk) Passed

Equal Variance Test:	Passed	(P = 0.394)			
Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.444	0.0315	0.0157
0.3 mg/L	4	0	0.444	0.0125	0.00625
1.56 mg/L	4	0	0.400	0.0204	0.0102
3.12 mg/L	4	0	0.250	0.0289	0.0144
7.8 mg/L	4	0	0.119	0.0125	0.00625
100 mg/L B A	4	0	0.106	0.0239	0.0120
Source of Variation	DF	SS	MS	F	P
Between Groups	5	0.496	0.0992	190.44	<0.001
Residual	18	0.00937	0.000521		
Total	23	0.505			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = < 0.001).

Power of performed test with alpha = 0.050: 1.000

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 vs. 100 mg/L BA	0.338	20.914		Yes
HS-1 vs. 7.8 mg/L	0.325	20.14		Yes
HS-1 vs. 3.12 mg/L	0.194	12.006		Yes
HS-1 vs. 1.56 mg/L	0.0437	2.711		No
HS-1 vs. 0.3 mg/L	0.000	0.000		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2:4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

One Way Analysis of Variance Wednesday, April 18, 2018, 11:24:25 AM

Data source: Emergence in 00428_Stats.JNB SD21 Emergence 0.8 ANOV

Normality Test (Shapiro-Wilk) Passed (P = 0.061)

Equal Variance Test: Passed (P = 0.346)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.444	0.0315	0.0157
0.3 mg/L	4	0	0.444	0.0125	0.00625
1.56 mg/L	4	0	0.400	0.0204	0.0102
3.12 mg/L	4	0	0.250	0.0289	0.0144
7.8 mg/L	4	0	0.119	0.0125	0.0063
Source of Variation	DF	SS	MS	F	P
Between Groups	4	0.327	0.0818	160.255	< 0.001
Residual	15	0.00766	0.00051		
Total	19	0.335			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 vs. 7.8 mg/L	0.325	20.344		Yes
HS-1 vs. 3.12 mg/L	0.194	12.128		Yes
HS-1 vs. 1.56 mg/L	0.0437	2.739		Yes
HS-1 vs. 0.3 mg/L	0.000	0.000		No

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

One Way Analysis of Variance Wednesday, April 18, 2018, 11:26:33 AM

Data source: Emergence in 00428_Stats.JNB SD21 Emergence 2.8 ANOV

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, April 18, 2018, 11:26:33 AM

Data source: Emergence in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1 2.8	4	0	0.450	0.450	0.469
0.3 mg/L 2.8	4	0	0.463	0.450	0.475
1.56 mg/L 2.8	4	0	0.425	0.425	0.444
3.12 mg/L 2.8	4	0	0.400	0.381	0.400
7.8 mg/L 2.8	4	0	0.250	0.250	0.287

H = 17.318 with 4 degrees of freedom. (P = 0.002)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.002)

To isolate the group or groups that differ from the others use a multiple comparison procedure. Multiple Comparisons versus Control Group (Dunnett's Method) :

Comparison	Diff of Ranks	q'	P<0.05
7.8 mg/L 2.8 vs HS-1 2.8	52.500	3.137	Yes
3.12 mg/L 2.8 vs HS-1 2.8	36.500	2.181	No
1.56 mg/L 2.8 vs HS-1 2.8	18.000	1.076	Do Not Test
0.3 mg/L 2.8 vs HS-1 2.8	4.500	0.269	Do Not Test

Note: The multiple comparisons on ranks do not include an adjustment for ties.

t-test Wednesday, April 18, 2018, 11:50:51 AM

Data source: Emergence in 00428_Stats.JNB SD21 Emerg HS-1 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.416)

Equal Variance Test: Passed (P = 0.390)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.444	0.0315	0.0157
HS-1 2.8	4	0	0.456	0.0125	0.00625

Difference -0.0125

t = -0.739 with 6 degrees of freedom. (P = 0.488)

95 percent confidence interval for difference of means: -0.0539 to 0.0289

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.488).

Power of performed test with alpha = 0.050: 0.050

The power of the performed test (0.050) is below the desired power of 0.800.

Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Wednesday, April 18, 2018, 11:51:39 AM

Data source: Emergence in 00428_Stats.JNB SD21 Emerg 0.3 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.057)

Equal Variance Test: Passed (P = 0.356)

Group Name	N	Missing	Mean	Std Dev	SEM
0.3 mg/L	4	0	0.444	0.0125	0.00625
0.3 mg/L 2.8	4	0	0.463	0.0144	0.00722

Difference -0.0188

t = -1.964 with 6 degrees of freedom. (P = 0.097)

95 percent confidence interval for difference of means: -0.0421 to 0.00461

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.097).

Power of performed test with alpha = 0.050: 0.289

The power of the performed test (0.289) is below the desired power of 0.800.

Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Wednesday, April 18, 2018, 11:52:16 AM

Data source: Emergence in 00428_Stats.JNB SD21 Emerg 1.56 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.374)

Equal Variance Test: Passed (P = 0.537)

Group Name	N	Missing	Mean	Std Dev	SEM
1.56 mg/L	4	0	0.4	0.0204	0.0102
1.56 mg/L 2.8	4	0	0.431	0.0125	0.00625

Difference -0.0313

t = -2.611 with 6 degrees of freedom. (P = 0.040)

95 percent confidence interval for difference of means: -0.0605 to -0.00197

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = 0.040).

Power of performed test with alpha = 0.050: 0.523

t-test Wednesday, April 18, 2018, 11:53:35 AM

Data source: Emergence in 00428_Stats.JNB SD21 Emerg 3.12 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.113)

Equal Variance Test: Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Wednesday, April 18, 2018, 11:53:35 AM

Data source: Emergence in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
3.12 mg/L	4	0	0.25	0.225	0.275
3.12 mg/L 2.8	4	0	0.400	0.381	0.400

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.025 P(exact) = 0.029

t-test Wednesday, April 18, 2018, 11:54:05 AM

Data source: Emergence in 00428_Stats.JNB SD21 Emerg 7.8 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.071)

Equal Variance Test: Passed (P = 0.670)

Group Name	N	Missing	Mean	Std Dev	SEM
7.8 mg/L	4	0	0.119	0.0125	0.00625
7.8 mg/L 2.8	4	0	0.263	0.0250	0.0125

Difference -0.1440

t = -10.286 with 6 degrees of freedom. (P = <0.001)

95 percent confidence interval for difference of means: -0.178 to -0.110 $\,$

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

t-test Wednesday, April 18, 2018, 11:54:33 AM

Data source: Emergence in 00428_Stats.JNB SD21 Emerg HS-1vsBA t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.408)

Equal Variance Test: Passed (P = 1.000)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.444	0.0315	0.0157
100 mg/L BA	4	0	0.106	0.0239	0.012

Difference 0.337

t = 17.076 with 6 degrees of freedom. (P = <0.001)

 $95\,percent$ confidence interval for difference of means: 0.289 to 0.386

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

Descriptive Statistics:	Wednesday, Apı	ril 18, 2018, 1:33:25 PM
-------------------------	----------------	--------------------------

Data source: Phytotoxicity	in 00428 State INR	SD21 Phy	totox Descr
Data Source, Phytotoxicity	/ III 00420 3tats.JND	3DZI FIII	/LULUX DESCI

Data source: Phytotoxicity	in 00428_Stats.	JNB	SD21 Phyto	otox Descr		
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	0.000	0.000	0.000	0.000
0.3 mg/L	4	0	0.000	0.000	0.000	0.000
1.56 mg/L	4	0	0.000	0.000	0.000	0.000
3.12 mg/L	4	0	0.000	0.000	0.000	0.000
7.8 mg/L	4	0	0.000	0.000	0.000	0.000
HS-1 2.8	4	0	0.000	0.000	0.000	0.000
0.3 mg/L 2.8	4	0	0.000	0.000	0.000	0.000
1.56 mg/L 2.8	4	0	0.000	0.000	0.000	0.000
3.12 mg/L 2.8	4	0	0.000	0.000	0.000	0.000
7.8 mg/L 2.8	4	0	0.000	0.000	0.000	0.000
100 mg/L BA	4	0	1.000	0.000	0.000	0.000
Column	Range	Max	Min	Median	25%	75%
HS-1	0.000	0.000	0.000	0.000	0.000	0.000
0.3 mg/L	0.000	0.000	0.000	0.000	0.000	0.000
1.56 mg/L	0.000	0.000	0.000	0.000	0.000	0.000
3.12 mg/L	0.000	0.000	0.000	0.000	0.000	0.000
7.8 mg/L	0.000	0.000	0.000	0.000	0.000	0.000
HS-1 2.8	0.000	0.000	0.000	0.000	0.000	0.000
0.3 mg/L 2.8	0.000	0.000	0.000	0.000	0.000	0.000
1.56 mg/L 2.8	0.000	0.000	0.000	0.000	0.000	0.000
3.12 mg/L 2.8	0.000	0.000	0.000	0.000	0.000	0.000
7.8 mg/L 2.8	0.000	0.000	0.000	0.000	0.000	0.000
100 mg/L BA	0.000	1.000	1.000	1.000	1.000	1.000
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	swilk w	SWilk Prob
HS-1	0.000	-6.000	0	<0.001	0	<0.001
0.3 mg/L	0.000	-6.000	0	<0.001	0	<0.001
1.56 mg/L	0.000	-6.000	0	<0.001	0	<0.001
3.12 mg/L	0.000	-6.000	0	<0.001	0	<0.001
7.8 mg/L	0.000	-6.000	0	<0.001	0	<0.001
HS-1 2.8	0.000	-6.000	0	<0.001	0	<0.001
0.3 mg/L 2.8	0.000	-6.000	0	<0.001	0	<0.001
1.56 mg/L 2.8	0.000	-6.000	0	<0.001	0	<0.001
3.12 mg/L 2.8	0.000	-6.000	0	<0.001	0	<0.001
7.8 mg/L 2.8	0.000	-6.000	0	<0.001	0	<0.001
100 mg/L BA	0.000	-6.000	0	<0.001	0	<0.001
Column	Sum	Sum of Squares				
HS-1	0	0				
0.3 mg/L	0	0				
1.56 mg/L	0	0				
3.12 mg/L	0	0				
7.8 mg/L	0	0				
HS-1 2.8	0	0				
0.3 mg/L 2.8	0	0				
1.56 mg/L 2.8	0	0				
3.12 mg/L 2.8	0	0				
7.8 mg/L 2.8	0	0				
100 mg/L BA	4	4				

One Way Analysis of Variance Wednesday, April 18, 2018, 1:34:32 PM

Data source: Phytotoxicity in 00428_Stats.JNB SD21 Phytotox -100 BA ANOVA

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, April 18, 2018, 1:34:32 PM

Data source: Phytotoxicity in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.000	0.000	0.000
0.3 mg/L	4	0	0.000	0.000	0.000
1.56 mg/L	4	0	0.000	0.000	0.000
3.12 mg/L	4	0	0.000	0.000	0.000
7.8 mg/L	4	0	0.000	0.000	0.000
100 mg/L BA	4	0	1.571	1.571	1.571

H = 23.000 with 5 degrees of freedom. (P = <0.001)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparison	Diff of Ranks	q'	P<0.05
100 mg/L BA vs HS-1	48.000	2.400	No
0.3 mg/L vs HS-1	0.000	0.000	Do Not Test
1.56 mg/L vs HS-1	0.000	0.000	Do Not Test
3.12 mg/L vs HS-1	0.000	0.000	Do Not Test
7.8 mg/L vs HS-1	0.000	0.000	Do Not Test

Note: The multiple comparisons on ranks do not include an adjustment for ties.

One Way Analysis of Variance Wednesday, April 18, 2018, 1:37:09 PM

Data source: Phytotoxicity in 00428_Stats.JNB SD21 Phytotox 0.8 ANOVA

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, April 18, 2018, 1:37:09 PM

Data source: Phytotoxicity in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.000	0.000	0.000
0.3 mg/L	4	0	0.000	0.000	0.000
1.56 mg/L	4	0	0.000	0.000	0.000
3.12 mg/L	4	0	0.000	0.000	0.000
7.8 mg/L	4	0	0.000	0.000	0.000

H = 0.000 with 4 degrees of freedom. (P = 1.000)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 1.000)

One Way Analysis of Variance Wednesday, April 18, 2018, 1:37:45 PM

Data source: Phytotoxicity in 00428_Stats.JNB SD21 Phytotox 2.8 ANOVA

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks Wednesday, April 18, 2018, 1:37:45 PM

Data source: Phytotoxicity in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1 2.8	4	0	0.000	0.000	0.000
0.3 mg/L 2.8	4	0	0.000	0.000	0.000
1.56 mg/L 2.8	4	0	0.000	0.000	0.000
3.12 mg/L 2.8	4	0	0.000	0.000	0.000
7.8 mg/L 2.8	4	0	0.000	0.000	0.000

H = 0.000 with 4 degrees of freedom. (P = 1.000)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 1.000)

t-test Wednesday, April 18, 2018, 1:38:26 PM

Data source: Phytotoxicity in 00428_Stats.JNB SD21 Phytotox HS-1vsBA t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Wednesday, April 18, 2018, 1:38:26 PM

Data source: Phytotoxicity in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.000	0.000	0.000
100 mg/L BA	4	0	1.571	1.571	1.571

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.013 P(exact) = 0.029

Descriptive Statistics: Thursday, June 14, 2018, 3:42:56 PM

Data source: Root Length in 00428_Stats.JNB

SD21 Root Length Descriptive

Data source: Root Length in 00428_Stats.JNB			SD21 Root Length Descriptive			
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	32.948	1.165	0.583	1.854
0.3 mg/L	4	0	41.642	6.246	3.123	9.939
1.56 mg/L	4	0	50.928	8.114	4.057	12.911
3.12 mg/L	4	0	44.156	6.115	3.057	9.730
7.8 mg/L	4	0	38.647	8.741	4.371	13.910
HS-1 2.8	4	0	39.795	4.717	2.359	7.506
0.3 mg/L 2.8	4	0	47.835	7.010	3.505	11.154
1.56 mg/L 2.8	4	0	46.370	5.644	2.822	8.981
3.12 mg/L 2.8	4	0	47.343	6.497	3.248	10.338
7.8 mg/L 2.8	4	0	34.464	1.735	0.867	2.761
100 mg/L BA	4	0	31.417	7.069	3.535	11.248
Column	Range	Max	Min	Median	25%	75%
HS-1	2.511	34.220	31.709	32.931	31.981	33.915
0.3 mg/L	14.805	48.174	33.368	42.513	37.199	46.085
1.56 mg/L	16.842	58.743	41.901	51.533	44.114	57.741
3.12 mg/L	13.533	53.171	39.638	41.908	40.551	47.761
7.8 mg/L	20.437	49.849	29.412	37.663	32.100	45.194
HS-1 2.8	10.564	45.960	35.396	38.911	36.164	43.425
0.3 mg/L 2.8	16.899	57.222	40.323	46.897	43.240	52.430
1.56 mg/L 2.8	11.846	54.683	42.837	43.981	42.841	49.900
3.12 mg/L 2.8	14.807	54.594	39.787	47.496	42.188	52.499
7.8 mg/L 2.8	4.206	36.575	32.369	34.456	33.261	35.667
100 mg/L BA	16.533	40.115	23.581	30.987	26.034	36.801
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	SWilk W	SWilk Prob
HS-1	0.047	-3.745	0.225	0.542	0.935	0.621
0.3 mg/L	-0.752	0.817	0.211	0.596	0.973	0.857
1.56 mg/L	-0.199	-4.303	0.263	0.374	0.897	0.414
3.12 mg/L	1.793	3.386	0.366	0.065	0.796	0.095
7.8 mg/L	0.567	-0.224	0.171	0.699	0.982	0.912
HS-1 2.8	0.808	-0.789	0.228	0.528	0.939	0.65
0.3 mg/L 2.8	0.771	1.628	0.261	0.382	0.954	0.743
1.56 mg/L 2.8	1.796	3.205	0.338	0.116	0.759	0.047
3.12 mg/L 2.8	-0.103	-1.956	0.181	0.682	0.981	0.906
7.8 mg/L 2.8	0.027	0.902	0.182	0.679	0.991	0.963
100 mg/L BA	0.303	-0.706	0.161	0.708	0.992	0.967
Column	Sum	Sum of Squares				
HS-1	131.79	4346.244				
0.3 mg/L	166.567	7053.185				
1.56 mg/L	203.711	10572.033				
3.12 mg/L	176.625	7911.308				
7.8 mg/L	154.587	6203.54				
HS-1 2.8	159.18	6401.291				
0.3 mg/L 2.8	191.340	9300.122				
1.56 mg/L 2.8	185.481	8696.42				
3.12 mg/L 2.8	189.374	9092.224				
7.8 mg/L 2.8	137.856	4760.12				
100 mg/L BA	125.669	4098.102				

One Way Analysis of Variance Thursday, June 14, 2018, 3:51:22 PM

Data source: Root Length in 00428_Stats.JNB SD21 Root Length -100 BA ANOVA

Normality Test (Shapiro-Wilk) Passed (P = 0.456)

Equal Variance Test: Passed (P = 0.251)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	32.948	1.1650	0.5830
0.3 mg/L	4	0	41.642	6.2460	3.12300
1.56 mg/L	4	0	50.928	8.1140	4.0570
3.12 mg/L	4	0	44.156	6.1150	3.0570
7.8 mg/L	4	0	38.647	8.7410	4.37100
100 mg/L BA	4	0	31.417	7.0690	3.5350
Source of Variation	DF	SS	MS	F	P
Between Groups	5	1058.418	211.684	4.704	0.006
Residual	18	809.954	44.997		
Total	23	1868.372			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.006).

Power of performed test with alpha = 0.050: 0.834

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 vs. 1.56 mg/L	17.98	3.791		Yes
HS-1 vs. 3.12 mg/L	11.209	2.363		No
HS-1 vs. 0.3 mg/L	8.694	1.833		Do Not Test
HS-1 vs. 7.8 mg/L	5.699	1.202		Do Not Test
HS-1 vs. 100 mg/L BA	1.530	0.323		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

One Way Analysis of Variance Thursday, June 14, 2018, 3:52:55 PM

Data source: Root Length in 00428 Stats.JNB SD21 Root Length 0.8 ANOVA

Passed

Normality Test (Shapiro-Wilk) Passed (P = 0.667)

Group Name Ν Missing Mean Std Dev SEM HS-1 4 0 32.948 1.1650 0.5830 0.3 mg/L 4 0 41.642 6.2460 3.12300 1.56 mg/L 4 0 50.928 8.1140 4.0570 3.12 mg/L 0 44.156 6.1150 3.0570

(P = 0.194)

7.8 mg/L	4	0	38.647	8.7410	4.3710
Source of Variation	DF	SS	MS	F	P
Between Groups	4	708.432	177.108	4.025	0.021
Residual	15	660.037	44.002		
Total	19	1368.469			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.021).

Power of performed test with alpha = 0.050: 0.657

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Equal Variance Test:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 vs. 1.56 mg/L	17.98	3.833		Yes
HS-1 vs. 3.12 mg/L	11.209	2.390		No
HS-1 vs. 0.3 mg/L	8.694	1.854		Do Not Test
HS-1 vs. 7.8 mg/L	5.699	1.215		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

One Way Analysis of Variance Thursday, June 14, 2018, 3:54:14 PM

Data source: Root Length in 00428_Stats.JNB SD21 Root Length 2.8 ANOVA

Normality Test (Shapiro-Wilk) Passed (P = 0.305)

Equal Variance Test: Passed (P = 0.555)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0	39.795	4.717	2.359
0.3 mg/L 2.8	4	0	47.835	7.010	3.505
1.56 mg/L 2.8	4	0	46.370	5.644	2.822
3.12 mg/L 2.8	4	0	47.343	6.497	3.248
7.8 mg/L 2.8	4	0	34.464	1.735	0.867
Source of Variation	DF	SS	MS	F	P
Between Groups	4	546.422	136.606	4.601	0.013
Residual	15	445.381	29.692		
Total	19	991.803			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.013).

Power of performed test with alpha = 0.050: 0.744

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 2.8 vs. 0.3 mg/L 2.8	8.040	2.087		No
HS-1 2.8 vs. 3.12 mg/L 2.8	7.549	1.959		Do Not Test
HS-1 2.8 vs. 1.56 mg/L 2.8	6.575	1.707		Do Not Test
HS-1 2.8 vs. 7.8 mg/L 2.8	5.331	1.384		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

t-test Thursday, June 14, 2018, 3:55:11 PM

Data source: Root Length in 00428_Stats.JNB SD21 Root Leng HS-1 0.8v2.8 t-t

Normality Test (Shapiro-Wilk) Passed (P = 0.670)

Equal Variance Test: Passed (P = 0.070)

Group Name Ν Missing Std Dev SEM Mean HS-1 4 0 32.948 1.165 0.583 HS-1 2.8 4 0 39.795 4.717 2.359

Difference -6.847

t = -2.818 with 6 degrees of freedom. (P = 0.030)

95 percent confidence interval for difference of means: -12.792 to -0.903

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = 0.030).

Power of performed test with alpha = 0.050: 0.598

t-test Thursday, June 14, 2018, 3:56:02 PM

Data source: Root Length in 00428_Stats.JNB SD21 Root Leng 0.3 0.8v2.8 t-te

Normality Test (Shapiro-Wilk) Passed (P = 0.721)

Equal Variance Test: Passed (P = 0.961)

Group Name	N	Missing	Mean	Std Dev	SEM
0.3 mg/L	4	0	41.642	6.246	3.123
0.3 mg/L 2.8	4	0	47.835	7.01	3.505

Difference -6.1930

t = -1.319 with 6 degrees of freedom. (P = 0.235)

95 percent confidence interval for difference of means: -17.680 to 5.293

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.235).

Power of performed test with alpha = 0.050: 0.109

The power of the performed test (0.109) is below the desired power of 0.800.

Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Thursday, June 14, 2018, 3:56:31 PM

Data source: Root Length in 00428_Stats.JNB SD21 Root Leng 1.56 0.8v2.8 t-t

Normality Test (Shapiro-Wilk) Passed (P = 0.253)

Equal Variance Test: Passed (P = 0.255)

Group Name	N	Missing	Mean	Std Dev	SEM
1.56 mg/L	4	0	50.928	8.114	4.057
1.56 mg/L 2.8	4	0	46.37	5.644	2.822

Difference 4.5570

t = 0.922 with 6 degrees of freedom. (P = 0.392)

95 percent confidence interval for difference of means: -7.535 to $16.650\,$

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.392).

Power of performed test with alpha = 0.050: 0.050

The power of the performed test (0.050) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Thursday, June 14, 2018, 3:57:13 PM

Data source: Root Length in 00428_Stats.JNB SD21 Root Leng 3.12 0.8v2.8 t-t

Normality Test (Shapiro-Wilk) Passed (P = 0.425)

Equal Variance Test: Passed (P = 0.612)

Group Name	N	Missing	Mean	Std Dev	SEM
3.12 mg/L	4	0	44.156	6.115	3.057
3.12 mg/L 2.8	4	0	47.343	6.497	3.248

Difference -3.1870

t = -0.714 with 6 degrees of freedom. (P = 0.502)

95 percent confidence interval for difference of means: -14.103 to 7.728

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.502).

Power of performed test with alpha = 0.050: 0.050

The power of the performed test (0.050) is below the desired power of 0.800. Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Thursday, June 14, 2018, 3:57:46 PM

Data source: Root Length in 00428_Stats.JNB SD21 Root Leng 7.8 0.8v2.8 t-te

Normality Test (Shapiro-Wilk) Passed (P = 0.637)

Equal Variance Test: Passed (P = 0.061)

Group Name	N	Missing	Mean	Std Dev	SEM
7.8 mg/L	4	0	38.647	8.741	4.371
7.8 mg/L 2.8	4	0	34.464	1.7350	0.867

Difference 4.1830

t = 0.939 with 6 degrees of freedom. (P = 0.384)

95 percent confidence interval for difference of means: -6.721 to $15.086\,$

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.384).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 3:58:13 PM

Data source: Root Length in 00428_Stats.JNB SD21 Root Leng HS-1vsBA t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.721)

Equal Variance Test: Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Thursday, June 14, 2018, 3:58:13 PM

Data source: Root Length in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	32.931	31.845	34.067
100 mg/L BA	4	0	30.987	24.808	38.458

Mann-Whitney U Statistic= 6.000

T = 20.000 n(small) = 4 n(big) = 4 P(est.) = 0.665 P(exact) = 0.686

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.686)

Descriptive Statistics: Thursday, June 14, 2018, 3:42:15 PM

Data source: Root Weig	ht in 00428_Stats.J	NB	SD21 Root	Weight Des	criptive	
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	0.001	0.000	0.000	0.000
0.3 mg/L	4	0	0.001	0.000	0.000	0.000
1.56 mg/L	4	0	0.001	0.000	0.000	0.000
3.12 mg/L	4	0	0.001	0.000	0.000	0.000
7.8 mg/L	4	0	0.001	0.000	0.000	0.000
HS-1 2.8	4	0	0.001	0.000	0.000	0.000
0.3 mg/L 2.8	4	0	0.001	0.000	0.000	0.000
1.56 mg/L 2.8	4	0	0.001	0.000	0.000	0.000
3.12 mg/L 2.8	4	0	0.001	0.000	0.000	0.000
7.8 mg/L 2.8	4	0	0.001	0.000	0.000	0.000
100 mg/L BA	4	0	0.001	0.000	0.000	0.001
Column	Range	Max	Min	Median	25%	75%
HS-1	0.000	0.001	0.001	0.001	0.001	0.001
0.3 mg/L	0.000	0.001	0.001	0.001	0.001	0.001
1.56 mg/L	0.000	0.001	0.001	0.001	0.001	0.001
3.12 mg/L	0.000	0.001	0.001	0.001	0.001	0.001
7.8 mg/L	0.000	0.001	0.001	0.001	0.001	0.001
HS-1 2.8	0.000	0.001	0.001	0.001	0.001	0.001
0.3 mg/L 2.8	0.000	0.001	0.001	0.001	0.001	0.001
1.56 mg/L 2.8	0.000	0.001	0.001	0.001	0.001	0.001
3.12 mg/L 2.8	0.000	0.001	0.001	0.001	0.001	0.001
7.8 mg/L 2.8	0.000	0.001	0.001	0.001	0.001	0.001
100 mg/L BA	0.001	0.002	0.001	0.001	0.001	0.001
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	SWilk W	SWilk Prob
HS-1	0.554	-1.179	0.204	0.618	0.968	0.827
0.3 mg/L	-0.060	0.633	0.17	0.7	0.996	0.985
1.56 mg/L	1.179	1.850	0.27	0.342	0.928	0.581
3.12 mg/L	-1.628	2.935	0.335	0.123	0.846	0.213
7.8 mg/L	0.989	0.376	0.205	0.617	0.941	0.661
HS-1 2.8	-0.218	1.526	0.264	0.368	0.943	0.673
0.3 mg/L 2.8	0.544	-1.062	0.199	0.636	0.971	0.849
1.56 mg/L 2.8	-2.000	4.000	0.441	0.006	0.63	0.001
3.12 mg/L 2.8	1.836	3.528	0.383	0.041	0.775	0.065
7.8 mg/L 2.8	-0.782	-0.693	0.219	0.565	0.948	0.704
100 mg/L BA	1.952	3.852	0.411	0.017	0.711	0.016
Column	Sum	Sum of Squares				
HS-1	0.00318	0.00000254				
0.3 mg/L	0.00411	0.00000427				
1.56 mg/L	0.003	0.00000184				
3.12 mg/L	0.004	0.00000317				
7.8 mg/L	0.00329	0.00000277				
HS-1 2.8	0.00352	0.00000312				
0.3 mg/L 2.8	0.004	0.0000034				
1.56 mg/L 2.8	0.00315	0.00000248				
3.12 mg/L 2.8	0.0032	0.00000258				
7.8 mg/L 2.8	0.003	0.0000022				
100 mg/L BA	0.00329	0.00000342				

One Way Analysis of Variance Thursday, June 14, 2018, 3:59:33 PM

Data source: Root Weight in 00428_Stats.JNB SD21 Root Weight -100 BA ANOVA

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks Thursday, June 14, 2018, 3:59:33 PM

Data source: Root Weight in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.000790	0.000750	0.000849
0.3 mg/L	4	0	0.00103	0.000900	0.00115
1.56 mg/L	4	0	0.000672	0.000654	0.000708
3.12 mg/L	4	0	0.000921	0.000766	0.000967
7.8 mg/L	4	0	0.000790	0.000695	0.000979
100 mg/L BA	4	0	0.000610	0.000540	0.00132

H = 10.930 with 5 degrees of freedom. (P = 0.053)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.053)

One Way Analysis of Variance Thursday, June 14, 2018, 4:01:11 PM

Data source: Root Weight in 00428_Stats.JNB SD21 Root Weight 0.8 ANOVA

Normality Test (Shapiro-Wilk) Passed (P = 0.609)

Equal Variance Test: Passed (P = 0.332)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.000796	0.0000515	0.0000258
0.3 mg/L	4	0	0.00103	0.000131	0.0000656
1.56 mg/L	4	0	0.000678	0.0000293	0.0000146
3.12 mg/L	4	0	0.000885	0.000115	0.0000573
7.8 mg/L	4	0	0.000821	0.000151	0.0000755
Source of Variation	DF	SS	MS	F	Р
Between Groups	4	2.61E-07	6.53E-08	5.758	0.005
Residual	15	1.7E-07	1.13E-08		
Total	19	4.31E-07			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.005).

Power of performed test with alpha = 0.050: 0.868

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	Р	P<0.050
HS-1 vs. 0.3 mg/L	0.00023	3.059		Yes
HS-1 vs. 1.56 mg/L	0.000118	1.569		No
HS-1 vs. 3.12 mg/L	0.0000885	1.176		Do Not Test
HS-1 vs. 7.8 mg/L	0.000	0.334		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

One Way Analysis of Variance Thursday, June 14, 2018, 4:02:19 PM

Data source: Root Weight in 00428_Stats.JNB SD21 Root Weight 2.8 ANOVA

Normality Test (Shapiro-Wilk) Passed (P = 0.347)

Equal Variance Test: Passed (P = 0.167)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0	0.000881	0.0000724	0.0000362
0.3 mg/L 2.8	4	0	0.000920	0.0000678	0.0000339
1.56 mg/L 2.8	4	0	0.000787	2.45E-06	0.00000123
3.12 mg/L 2.8	4	0	0.000801	0.0000625	0.0000313
7.8 mg/L 2.8	4	0	0.000735	0.000111	0.0000557
Source of Variation	DF	SS	MS	F	P
Between Groups	4	8.83E-08	2.21E-08	4.218	0.017
Residual	15	7.85E-08	0.000		
Total	19	1.67E-07			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.017).

Power of performed test with alpha = 0.050: 0.688

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 2.8 vs. 7.8 mg/L 2.8	0.000	2.84		Yes
HS-1 2.8 vs. 1.56 mg/L 2.8	0.000	1.831		No
HS-1 2.8 vs. 3.12 mg/L 2.8	0.000	1.553		Do Not Test
HS-1 2.8 vs. 0.3 mg/L 2.8	0.000	0.760		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

t-test Thursday, June 14, 2018, 4:10:50 PM

Data source: Root Weight in 00428_Stats.JNB SD21 Root Weight HS-1 0.8v2.8 t

Normality Test (Shapiro-Wilk) Passed (P = 0.921)

Equal Variance Test: Passed (P = 0.885)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.000796	5.15E-05	2.58E-05
HS-1 2.8	4	0	0.000881	7.24E-05	3.62E-05

Difference -8.5E-05

t = -1.904 with 6 degrees of freedom. (P = 0.106)

95 percent confidence interval for difference of means: -0.000193 to 0.0000241

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.106).

Power of performed test with alpha = 0.050: 0.269

The power of the performed test (0.269) is below the desired power of 0.800.

Less than desired power indicates you are less likely to detect a difference when one actually exists. Negative results should be interpreted cautiously.

t-test Thursday, June 14, 2018, 4:11:33 PM

Data source: Root Weight in 00428_Stats.JNB SD21 Root Weight 0.3 0.8v2.8 t

Normality Test (Shapiro-Wilk) Passed (P = 0.995)

Equal Variance Test: Passed (P = 0.360)

Group Name	N	Missing	Mean	Std Dev	SEM
0.3 mg/L	4	0	0.00103	0.000131	6.56E-05
0.3 mg/L 2.8	4	0	0.00092	6.78E-05	3.39E-05

Difference 0.000107

t = 1.446 with 6 degrees of freedom. (P = 0.198)

95 percent confidence interval for difference of means: -0.0000740 to 0.000288

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.198).

Power of performed test with alpha = 0.050: 0.138

t-test Thursday, June 14, 2018, 4:11:57 PM

Data source: Root Weight in 00428_Stats.JNB SD21 Root Weight 1.56 0.8v2.8 t

Normality Test (Shapiro-Wilk) Passed (P = 0.069)

Equal Variance Test: Passed (P = 0.117)

 Group Name
 N
 Missing
 Mean
 Std Dev
 SEM

 1.56 mg/L
 4
 0
 0.000678
 2.93E-05
 1.46E-05

 1.56 mg/L 2.8
 4
 0
 0.000787
 2.45E-06
 1.23E-06

Difference -0.0001

t = -7.417 with 6 degrees of freedom. (P = <0.001)

95 percent confidence interval for difference of means: -0.000145 to -0.0000731

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

t-test Thursday, June 14, 2018, 4:15:28 PM

Data source: Root Weight in 00428_Stats.JNB SD21 Root Weight 3.12 0.8v2.8 t

Normality Test (Shapiro-Wilk)	Passed	(P = 0.397)		
Equal Variance Test:	Passed	(P = 0.528)		
Group Name N	Missing	Mean	Std Dev	SEM
3.12 mg/L 4	0	0.000885	0.000115	5.73E-05
3.12 mg/L 2.8 4		0.000801	6.25E-05	3.13E-05

Difference 0.0001

t = 1.278 with 6 degrees of freedom. (P = 0.249)

95 percent confidence interval for difference of means: -0.0000763 to 0.000243

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.249).

Power of performed test with alpha = 0.050: 0.100

t-test Thursday, June 14, 2018, 4:15:49 PM

Data source: Root Weight in 00428_Stats.JNB SD21 Root Weight 7.8 0.8v2.8 t

Normality Test (Shapiro-Wilk) Passed (P = 0.756)

Equal Variance Test: Passed (P = 0.637)

Group Name Ν Missing Std Dev SEM Mean 7.8 mg/L 4 0.000821 0.000151 7.55E-05 0 7.8 mg/L 2.8 4 0 0.001 0.0001 5.57E-05

Difference 0.0001

t = 0.915 with 6 degrees of freedom. (P = 0.396)

95 percent confidence interval for difference of means: -0.000144 to 0.000315

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.396).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 4:16:15 PM

Data source: Root Weight in 00428_Stats.JNB SD21 Root Weight HS-1vsBA t

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Thursday, June 14, 2018, 4:16:15 PM

Data source: Root Weight in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.00079	0.00075	0.000849
100 mg/L BA	4	0	0.00061	0.00054	0.00132

Mann-Whitney U Statistic= 4.000

T = 22.000 n(small) = 4 n(big) = 4 P(est.) = 0.312 P(exact) = 0.343

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.343)

Descriptive Statistics: Thursday, June 14, 2018, 3:41:45 PM

Data source: Shoot Len	gtn in 00428_Stats.	INR	SD21 Shoot Length Descriptive				
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean	
HS-1	4	0	37.655	1.713	0.857	2.726	
0.3 mg/L	4	0	34.809	8.138	4.069	12.949	
1.56 mg/L	4	0	52.065	7.183	3.591	11.430	
3.12 mg/L	4	0	49.384	4.119	2.060	6.555	
7.8 mg/L	4	0	26.036	7.159	3.580	11.392	
HS-1 2.8	4	0	50.874	8.754	4.377	13.929	
0.3 mg/L 2.8	4	0	44.721	10.426	5.213	16.590	
1.56 mg/L 2.8	4	0	52.862	10.845	5.422	17.257	
3.12 mg/L 2.8	4	0	47.108	4.325	2.162	6.881	
7.8 mg/L 2.8	4	0	39.859	6.526	3.263	10.384	
100 mg/L BA	4	0	19.455	2.049	1.024	3.260	
Column	Range	Max	Min	Median	25%	75%	
HS-1	3.858	39.596	35.738	37.642	36.278	39.032	
).3 mg/L	17.551	45.934	28.383	32.459	28.741	40.876	
1.56 mg/L	16.203	58.221	42.018	54.011	46.992	57.139	
3.12 mg/L	8.654	54.369	45.715	48.727	46.010	52.759	
7.8 mg/L	15.671	35.939	20.269	23.968	20.801	31.271	
HS-1 2.8	20.685	60.359	39.673	51.732	44.428	57.320	
0.3 mg/L 2.8	21.817	60.313	38.495	40.039	39.047	50.396	
1.56 mg/L 2.8	23.634	62.439	38.804	55.102	44.368	61.356	
3.12 mg/L 2.8	8.682	50.775	42.093	47.783	43.497	50.720	
7.8 mg/L 2.8	15.195	47.835	32.640	39.480	34.849	44.869	
I00 mg/L BA	4.921	21.570	16.650	19.799	18.188	20.722	
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	swilk w	SWilk Prob	
HS-1	0.030	-2.421	0.188	0.668	0.972	0.856	
0.3 mg/L	1.146	0.247	0.259	0.394	0.874	0.315	
1.56 mg/L	-1.291	1.377	0.244	0.457	0.902	0.441	
3.12 mg/L	0.483	-3.104	0.273	0.333	0.896	0.411	
7.8 mg/L	1.227	0.728	0.244	0.457	0.882	0.347	
HS-1 2.8	-0.514	0.110	0.173	0.695	0.987	0.943	
0.3 mg/L 2.8	1.964	3.881	0.408	0.019	0.703	0.013	
1.56 mg/L 2.8	-0.793	-1.318	0.253	0.42	0.915	0.507	
3.12 mg/L 2.8	-0.352	-4.000	0.294	0.246	0.855	0.242	
7.8 mg/L 2.8	0.283	-0.923	0.166	0.704	0.99	0.96	
l00 mg/L BA	-0.970	2.009	0.303	0.217	0.921	0.545	
Column	Sum	Sum of Squares					
HS-1	150.619	5680.323					
).3 mg/L	139.235	5045.263					
L.56 mg/L	208.260	10997.877					
3.12 mg/L	197.537	9806.126					
7.8 mg/L	104.144	2865.261					
HS-1 2.8	203.496	10582.508					
0.3 mg/L 2.8	178.885	8326.08					
1.56 mg/L 2.8	211.447	11530.339					
3.12 mg/L 2.8	188.434	8932.942					
7.8 mg/L 2.8	159.435	6482.655					
100 mg/L BA	77.819	1526.537					

One Way Analysis of Variance Thursday, June 14, 2018, 4:18:13 PM

Data source: Shoot Length in 00428_Stats.JNB SD21 Shoot Length -100 BA ANOVA

Normality Test (Shapiro-Wilk) Passed (P = 0.806)

Equal Variance Test: Passed (P = 0.267)

Equal variance rest.	rasseu	(F = 0.207)			
Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	37.655	1.7130	0.8570
0.3 mg/L	4	0	34.809	8.1380	4.06900
1.56 mg/L	4	0	52.065	7.1830	3.5910
3.12 mg/L	4	0	49.384	4.1190	2.0600
7.8 mg/L	4	0	26.036	7.1590	3.58000
100 mg/L BA	4	0	19.455	2.0490	1.0240
Source of Variation	DF	SS	MS	F	Р
Between Groups	5	3249.921	649.984	20.188	<0.001
Residual	18	579.548	32.197		
Total	23	3829.469			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 vs. 100 mg/L BA	18.2	4.536		Yes
HS-1 v s. 1.56 mg/L	14.41	3.592		Yes
HS-1 v s. 3.12 mg/L	11.73	2.923		Yes
HS-1 v s. 7.8 mg/L	11.619	2.896		Yes
HS-1 v s. 0.3 mg/L	2.846	0.709		No

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

One Way Analysis of Variance Thursday, June 14, 2018, 4:18:45 PM

Data source: Shoot Length in 00428_Stats.JNB SD21 Shoot Length 0.8 ANOVA

Normality Test (Shapiro-Wilk) Passed (P = 0.905)

Equal Variance Test: Passed (P = 0.439)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	37.655	1.7130	0.8570
0.3 mg/L	4	0	34.809	8.1380	4.06900
1.56 mg/L	4	0	52.065	7.1830	3.5910
3.12 mg/L	4	0	49.384	4.1190	2.0600
7.8 mg/L	4	0	26.036	7.1590	3.5800
Source of Variation	DF	SS	MS	F	P
Between Groups	4	1844.296	461.074	12.199	<0.001
Residual	15	566.956	37.797		
Total	19	2411.252			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 0.999

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 vs. 1.56 mg/L	14.41	3.315		Yes
HS-1 vs. 3.12 mg/L	11.73	2.698		No
HS-1 vs. 7.8 mg/L	11.619	2.673		Do Not Test
HS-1 vs. 0.3 mg/L	2.846	0.655		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

One Way Analysis of Variance Thursday, June 14, 2018, 4:19:06 PM

Data source: Shoot Length in 00428_Stats.JNB SD21 Shoot Length 2.8 ANOVA

Normality Test (Shapiro-Wilk)	Passed	(P = 0.894)			
Equal Variance Test:	Passed	(P = 0.793)			
Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0	50.874	8.754	4.377
0.3 mg/L 2.8	4	0	44.721	10.4260	5.2130
1.56 mg/L 2.8	4	0	52.862	10.845	5.422
3.12 mg/L 2.8	4	0	47.108	4.3250	2.16200
7.8 mg/L 2.8	4	0	39.859	6.526	3.263
Source of Variation	DF	SS	MS	F	Р
Between Groups	4	422.134	105.534	1.449	0.267
Residual	15	1092.677	72.845		
Total	19	1514.812			

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.267).

Power of performed test with alpha = 0.050: 0.125

t-test Thursday, June 14, 2018, 4:19:25 PM

Data source: Shoot Length in 00428_Stats.JNB SD21 Shoot Leng HS-1 0.8v2.8 t

Normality Test (Shapiro-Wilk) Passed (P = 0.551)

Equal Variance Test: Passed (P = 0.077)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	37.655	1.713	0.857
HS-1 2.8	4	0	50.874	8.754	4.377

Difference -13.219

t = -2.964 with 6 degrees of freedom. (P = 0.025)

95 percent confidence interval for difference of means: -24.132 to -2.306

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = 0.025).

Power of performed test with alpha = 0.050: 0.648

t-test Thursday, June 14, 2018, 4:19:54 PM

Data source: Shoot Length in 00428_Stats.JNB SD21 Shoot Leng 0.3 0.8v2.8 t

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Thursday, June 14, 2018, 4:19:54 PM

Data source: Shoot Length in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
0.3 mg/L	4	0	32.459	28.562	43.405
0.3 mg/L 2.8	4	0	40.039	38.771	55.354

Mann-Whitney U Statistic= 3.000

T = 13.000 n(small) = 4 n(big) = 4 P(est.) = 0.194 P(exact) = 0.200

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.200)

t-test Thursday, June 14, 2018, 4:20:15 PM

Data source: Shoot Length in 00428_Stats.JNB SD21 Shoot Leng 1.56 0.8v2.8 t

Normality Test (Shapiro-Wilk) Passed (P = 0.454)

Equal Variance Test: Passed (P = 0.373)

Group Name	N	Missing	Mean	Std Dev	SEM
1.56 mg/L	4	0	52.065	7.183	3.591
1.56 mg/L 2.8	4	0	52.862	10.845	5.422

Difference -0.7970

t = -0.123 with 6 degrees of freedom. (P = 0.906)

95 percent confidence interval for difference of means: -16.711 to 15.118

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.906).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 4:20:37 PM

Data source: Shoot Length in 00428_Stats.JNB SD21 Shoot Leng 3.12 0.8v2.8 t

Normality Test (Shapiro-Wilk) Passed (P = 0.232)

Equal Variance Test: Passed (P = 0.827)

Group Name	N	Missing	Mean	Std Dev	SEM
3.12 mg/L	4	0	49.384	4.119	2.06
3.12 mg/L 2.8	4	0	47.108	4.325	2.162

Difference 2.2760

t = 0.762 with 6 degrees of freedom. (P = 0.475)

95 percent confidence interval for difference of means: -5.032 to 9.583

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.475).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 4:21:06 PM

Data source: Shoot Length in 00428_Stats.JNB SD21 Shoot Leng 7.8 0.8v2.8 t

Normality Test (Shapiro-Wilk) Passed (P = 0.416)

Equal Variance Test: Passed (P = 0.937)

Group Name	N	Missing	Mean	Std Dev	SEM
7.8 mg/L	4	0	26.036	7.159	3.58
7.8 mg/L 2.8	4	0	39.859	6.5260	3.263

Difference -13.8230

t = -2.854 with 6 degrees of freedom. (P = 0.029)

95 percent confidence interval for difference of means: -25.675 to -1.971

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = 0.029).

Power of performed test with alpha = 0.050: 0.610

t-test Thursday, June 14, 2018, 4:21:27 PM

Data source: Shoot Length in 00428_Stats.JNB SD21 Shoot Leng HS-1vsBA t

Normality Test (Shapiro-Wilk) Passed (P = 0.653)

Equal Variance Test: Passed (P = 0.896)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	37.655	1.713	0.857
100 mg/L BA	4	0	19.455	2.049	1.024

Difference 18.200

t = 13.630 with 6 degrees of freedom. (P = <0.001)

95 percent confidence interval for difference of means: 14.933 to 21.467

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

Descriptive Statistics: Thursday, June 14, 2018, 3:40:56 PM

Data source: Shoot Weight in 00428 Stats.JNB SD21 Shoot Weight Descriptive

Data source: Shoot We	eight in 00428_Stats.	JNB	SD21 Shoc	t Weight De	escriptive	
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	0.004	0.001	0.000	0.001
0.3 mg/L	4	0	0.003	0.000	0.000	0.001
1.56 mg/L	4	0	0.006	0.001	0.000	0.001
3.12 mg/L	4	0	0.004	0.001	0.001	0.002
7.8 mg/L	4	0	0.002	0.001	0.000	0.001
HS-1 2.8	4	0	0.005	0.001	0.000	0.001
0.3 mg/L 2.8	4	0	0.004	0.001	0.000	0.001
1.56 mg/L 2.8	4	0	0.004	0.001	0.001	0.002
3.12 mg/L 2.8	4	0	0.005	0.001	0.000	0.001
7.8 mg/L 2.8	4	0	0.003	0.000	0.000	0.000
100 mg/L BA	4	0	0.002	0.001	0.000	0.001
Column	Range	Max	Min	Median	25%	75%
HS-1	0.001	0.004	0.003	0.004	0.003	0.004
0.3 mg/L	0.001	0.004	0.003	0.003	0.003	0.004
1.56 mg/L	0.002	0.006	0.004	0.006	0.005	0.006
3.12 mg/L	0.002	0.005	0.003	0.004	0.003	0.005
7.8 mg/L	0.001	0.003	0.001	0.002	0.002	0.002
HS-1 2.8	0.001	0.005	0.004	0.005	0.004	0.005
0.3 mg/L 2.8	0.002	0.005	0.003	0.004	0.003	0.004
1.56 mg/L 2.8	0.003	0.005	0.003	0.004	0.003	0.005
3.12 mg/L 2.8	0.001	0.005	0.004	0.005	0.004	0.005
7.8 mg/L 2.8	0.001	0.003	0.003	0.003	0.003	0.003
100 mg/L BA	0.002	0.003	0.001	0.002	0.001	0.002
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	swilk w	SWilk Prob
HS-1	1.077	0.022	0.249	0.438	0.896	0.41
0.3 mg/L	1.715	3.221	0.362	0.072	0.817	0.136
1.56 mg/L	-0.917	-0.578	0.241	0.472	0.919	0.534
3.12 mg/L	-0.157	-5.009	0.289	0.268	0.847	0.216
7.8 mg/L	-0.052	1.109	0.197	0.641	0.985	0.931
HS-1 2.8	-0.210	-4.784	0.296	0.24	0.84	0.196
0.3 mg/L 2.8	0.594	0.889	0.209	0.601	0.981	0.906
1.56 mg/L 2.8	0.700	1.131	0.225	0.54	0.973	0.857
3.12 mg/L 2.8	-1.314	1.708	0.26	0.387	0.907	0.465
7.8 mg/L 2.8	0.238	-3.393	0.237	0.488	0.935	0.627
100 mg/L BA	1.541	2.632	0.313	0.183	0.868	0.289
Column	Sum	Sum of Squares				
HS-1	0.015	0.0000568				
0.3 mg/L	0.0137	0.0000472				
1.56 mg/L	0.022	0.000125				
3.12 mg/L	0.016	0.0000675				
7.8 mg/L	0.00806	0.0000172				
HS-1 2.8	0.0183	0.0000847				
0.3 mg/L 2.8	0.015	0.0000572				
1.56 mg/L 2.8	0.0161	0.0000688				
3.12 mg/L 2.8	0.019	0.0000913				
7.8 mg/L 2.8	0.013	0.0000409				
100 mg/L BA	0.00775	0.0000166				

One Way Analysis of Variance Thursday, June 14, 2018, 4:22:47 PM

Data source: Shoot Weight in 00428_Stats.JNB SD21 Shoot Weight -100 BA ANOVA

Normality Test (Shapiro-Wilk)	Passed	(P = 0.352)			
Equal Variance Test:	Passed	(P = 0.109)			
Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.003740	0.000533	0.000267
0.3 mg/L	4	0	0.003420	0.000410	0.000205
1.56 mg/L	4	0	0.005530	0.000895	0.000448
3.12 mg/L	4	0	0.003970	0.001220	0.000609
7.8 mg/L	4	0	0.002010	0.000567	0.000284
100 mg/L BA	4	0	0.001940	0.000714	0.000357
Source of Variation	DF	SS	MS	F	Р
Between Groups	5	0.0000361	7.21E-06	12.122	<0.001
Residual	18	0.0000107	5.95E-07		
Total	23	0.0000468			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 vs. 100 mg/L BA	0.0018	3.301		Yes
HS-1 v s. 1.56 mg/L	0.00179	3.281		Yes
HS-1 vs. 7.8 mg/L	0.00172	3.16		Yes
HS-1 vs. 0.3 mg/L	0.000322	0.59		No
HS-1 vs. 3.12 mg/L	0.00023	0.423		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

One Way Analysis of Variance Thursday, June 14, 2018, 4:24:09 PM

Data source: Shoot Weight in 00428_Stats.JNB SD21 Shoot Weight 0.8 ANOVA

Normality Test (Shapiro-Wilk) Passed (P = 0.530)

Equal Variance Test: Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks

Thursday, June 14, 2018, 4:24:09 PM

Data source: Shoot Weight in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	0.00360	0.00332	0.00430
0.3 mg/L	4	0	0.00328	0.00313	0.00384
1.56 mg/L	4	0	0.00573	0.00459	0.00627
3.12 mg/L	4	0	0.00407	0.00280	0.00504
7.8 mg/L	4	0	0.00202	0.00148	0.00255

H = 13.257 with 4 degrees of freedom. (P = 0.010)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.010)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparison	Diff of Ranks	q'	P<0.05
7.8 mg/L vs HS-1	36.000	2.151	No
1.56 mg/L vs HS-1	24.000	1.434	Do Not Test
0.3 mg/L vs HS-1	10.000	0.598	Do Not Test
3.12 mg/L vs HS-1	3.000	0.179	Do Not Test

Note: The multiple comparisons on ranks do not include an adjustment for ties.

One Way Analysis of Variance Thursday, June 14, 2018, 4:24:44 PM

Data source: Shoot Weight in 00428_Stats.JNB SD21 Shoot Weight 2.8 ANOVA

Normality Test (Shapiro-Wilk)	Passed	(P = 0.984)			
Equal Variance Test:	Passed	(P = 0.360)			
Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0	0.004560	0.000695	0.000348
0.3 mg/L 2.8	4	0	0.003740	0.000643	0.000321
1.56 mg/L 2.8	4	0	0.004040	0.001100	0.000549
3.12 mg/L 2.8	4	0	0.004760	0.000542	0.000271
7.8 mg/L 2.8	4	0	0.003190	0.000239	0.000119
Source of Variation	DF	SS	MS	F	P
Between Groups	4	6.37E-06	1.59E-06	3.251	0.042
Residual	15	7.35E-06	0.000		
Total	19	0.0000137			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.042).

Power of performed test with alpha = 0.050: 0.512

Multiple Comparisons versus Control Group (Dunnett's Method):

Comparisons for factor:

Comparison	Diff of Means	q'	P	P<0.050
HS-1 2.8 vs. 7.8 mg/L 2.8	0.001	2.771		Yes
HS-1 2.8 vs. 0.3 mg/L 2.8	0.001	1.664		No
HS-1 2.8 vs. 1.56 mg/L 2.8	0.001	1.062		Do Not Test
HS-1 2.8 vs. 3.12 mg/L 2.8	0.000	0.388		Do Not Test

Note: The P values for Dunnett's and Duncan's tests are currently unavailable except for reporting that the P's are greater or less than the critical values of .05 and .01.

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

t-test Thursday, June 14, 2018, 4:25:03 PM

Data source: Shoot Weight in 00428_Stats.JNB SD21 Shoot Weight HS-1 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.214)

Equal Variance Test: Passed (P = 0.326)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.00374	0.000533	0.000267
HS-1 2.8	4	0	0.00456	0.000695	0.000348

Difference -0.00083

t = -1.882 with 6 degrees of freedom. (P = 0.109)

95 percent confidence interval for difference of means: -0.00190 to 0.000247

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.109).

Power of performed test with alpha = 0.050: 0.262

t-test Thursday, June 14, 2018, 4:25:32 PM

Data source: Shoot Weight in 00428_Stats.JNB SD21 Shoot Weight 0.3 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.508)

Equal Variance Test: Passed (P = 0.444)

 Group Name
 N
 Missing
 Mean
 Std Dev
 SEM

 0.3 mg/L
 4
 0
 0.00342
 0.00041
 0.000205

 0.3 mg/L 2.8
 4
 0
 0.00374
 0.000643
 0.000321

Difference -0.0003

t = -0.848 with 6 degrees of freedom. (P = 0.429)

95 percent confidence interval for difference of means: -0.00126 to 0.000609

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.429).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 4:25:51 PM

Data source: Shoot Weight in 00428_Stats.JNB SD21 Shoot Weight 1.56 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.740)

Equal Variance Test: Passed (P = 0.863)

Group Name	N	Missing	Mean	Std Dev	SEM
1.56 mg/L	4	0	0.00553	0.000895	0.000448
1.56 mg/L 2.8	4	0	0.00404	0.0011	0.000549

Difference 0.0015

t = 2.105 with 6 degrees of freedom. (P = 0.080)

95 percent confidence interval for difference of means: -0.000242 to 0.00322

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.080).

Power of performed test with alpha = 0.050: 0.338

t-test Thursday, June 14, 2018, 4:26:17 PM

Data source: Shoot Weight in 00428_Stats.JNB SD21 Shoot Weight 3.12 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.596)

Equal Variance Test: Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Thursday, June 14, 2018, 4:26:17 PM

Data source: Shoot Weight in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
3.12 mg/L	4	0	0.00407	0.0028	0.00504
3.12 mg/L 2.8	4	0	0.005	0.00419	0.005

Mann-Whitney U Statistic= 5.000

T = 15.000 n(small) = 4 n(big) = 4 P(est.) = 0.470 P(exact) = 0.486

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.486)

t-test Thursday, June 14, 2018, 4:26:42 PM

Data source: Shoot Weight in 00428_Stats.JNB SD21 Shoot Weight 7.8 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.959)

Equal Variance Test: Passed (P = 0.336)

 Group Name
 N
 Missing
 Mean
 Std Dev
 SEM

 7.8 mg/L
 4
 0
 0.00201
 0.000567
 0.000284

 7.8 mg/L 2.8
 4
 0
 0.003
 0.0002
 0.000119

Difference -0.0012

t = -3.824 with 6 degrees of freedom. (P = 0.009)

95 percent confidence interval for difference of means: -0.00193 to -0.000424

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = 0.009).

Power of performed test with alpha = 0.050: 0.874

t-test Thursday, June 14, 2018, 4:27:09 PM

Data source: Shoot Weight in 00428_Stats.JNB SD21 Shoot Weight HS-1vsBA t

Normality Test (Shapiro-Wilk) Passed (P = 0.156)

Equal Variance Test: Passed (P = 0.860)

 Group Name
 N
 Missing
 Mean
 Std Dev
 SEM

 HS-1
 4
 0
 0.00374
 0.000533
 0.000267

 100 mg/L BA
 4
 0
 0.002
 0.000714
 0.000357

Difference 0.002

t = 4.041 with 6 degrees of freedom. (P = 0.007)

95 percent confidence interval for difference of means: $0.000710\ to\ 0.00289$

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = 0.007).

Power of performed test with alpha = 0.050: 0.909

Descriptive Statistics: Thursday, June 14, 2018, 3:40:02 PM

Data source: Leaf Weig	tht in 00428_Stats.JI	NB	SD21 Leaf	Weight Des	criptive	
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	0.002	0.000	0.000	0.001
0.3 mg/L	4	0	0.002	0.001	0.001	0.002
1.56 mg/L	4	0	0.002	0.001	0.001	0.002
3.12 mg/L	4	0	0.002	0.001	0.000	0.001
7.8 mg/L	4	0	0.001	0.001	0.000	0.001
HS-1 2.8	4	0	0.002	0.001	0.000	0.001
0.3 mg/L 2.8	4	0	0.002	0.001	0.001	0.002
1.56 mg/L 2.8	4	0	0.003	0.001	0.001	0.002
3.12 mg/L 2.8	4	0	0.002	0.001	0.000	0.001
7.8 mg/L 2.8	3	0	0.002	0.001	0.001	0.003
100 mg/L BA	4	0	0.001	0.000	0.000	0.001
Column	Range	Max	Min	Median	25%	75%
HS-1	0.001	0.002	0.001	0.002	0.001	0.002
0.3 mg/L	0.003	0.004	0.001	0.002	0.001	0.003
1.56 mg/L	0.003	0.004	0.001	0.002	0.001	0.003
3.12 mg/L	0.002	0.003	0.001	0.002	0.001	0.003
7.8 mg/L	0.001	0.002	0.001	0.002	0.001	0.002
HS-1 2.8	0.002	0.003	0.001	0.002	0.001	0.002
0.3 mg/L 2.8	0.002	0.003	0.001	0.002	0.001	0.003
1.56 mg/L 2.8	0.003	0.005	0.002	0.002	0.002	0.004
3.12 mg/L 2.8	0.002	0.003	0.001	0.003	0.002	0.003
7.8 mg/L 2.8	0.003	0.004	0.001	0.001	0.001	0.003
100 mg/L BA	0.001	0.002	0.001	0.001	0.001	0.001
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	SWilk W	SWilk Prob
HS-1	0.071	-1.647	0.17	0.701	0.986	0.939
0.3 mg/L	0.519	-1.827	0.223	0.548	0.955	0.746
1.56 mg/L	1.685	3.182	0.371	0.057	0.816	0.134
3.12 mg/L	-0.862	-0.028	0.202	0.625	0.953	0.734
7.8 mg/L	-1.770	3.121	0.333	0.127	0.787	0.081
HS-1 2.8	0.335	1.285	0.225	0.54	0.976	0.88
0.3 mg/L 2.8	0.973	-0.106	0.227	0.532	0.928	0.581
1.56 mg/L 2.8	1.686	2.828	0.316	0.173	0.819	0.142
3.12 mg/L 2.8	-1.085	0.860	0.221	0.558	0.935	0.624
7.8 mg/L 2.8	1.514		0.322	0.241	0.88	0.323
100 mg/L BA	-0.976	-0.634	0.269	0.347	0.877	0.326
Column	Sum	Sum of Squares				
HS-1	0.00666	0.0000115				
0.3 mg/L	0.00834	0.0000218				
1.56 mg/L	0.009	0.0000242				
3.12 mg/L	0.008	0.0000182				
7.8 mg/L	0.00595	0.00000971				
HS-1 2.8	0.00639	0.0000123				
0.3 mg/L 2.8	0.007	0.0000165				
1.56 mg/L 2.8	0.0107	0.0000346				
3.12 mg/L 2.8	0.00925	0.0000236				
7.8 mg/L 2.8	0.006	0.0000149				
100 mg/L BA	0.00473	0.00000606				

One Way Analysis of Variance Thursday, June 14, 2018, 4:28:30 PM

Data source: Leaf Weight in 00428_Stats.JNB SD21 Leaf Weight -100 BA ANOVA

Normality Test (Shapiro-Wilk)	Passed	(P = 0.359)			
Equal Variance Test:	Passed	(P = 0.462)			
Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.00166	0.0004	0.0002
0.3 mg/L	4	0	0.002	0.0012	0.00061
1.56 mg/L	4	0	0.002	0.0013	0.0007
3.12 mg/L	4	0	0.002	0.0009	0.0005
7.8 mg/L	4	0	0.001	0.0005	0.00027
100 mg/L BA	4	0	0.001	0.0004	0.0002
Source of Variation	DF	SS	MS	F	Р
Between Groups	5	2.99E-06	5.99E-07	0.773	0.582
Residual	18	0.0000139	7.75E-07		
Total	23	0.0000169			

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.582).

Power of performed test with alpha = 0.050: 0.050

One Way Analysis of Variance Thursday, June 14, 2018, 4:28:55 PM

Data source: Leaf Weight in 00428_Stats.JNB SD21 Leaf Weight 0.8 ANOVA

DF

4

15

19

Normality Test (Shapiro-Wilk)	Passed	(P = 0.480)			
Equal Variance Test:	Passed	(P = 0.520)			
Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.00166	0.0004	0.0002
0.3 mg/L	4	0	0.002	0.0012	0.00061
1.56 mg/L	4	0	0.002	0.0013	0.0007
3.12 mg/L	4	0	0.002	0.0009	0.0005
7.8 mg/L	4	0	0.001	0.0005	0.0003

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.818).

SS

1.37E-06

0.0000135

0.0000148

MS

3.43E-07

8.98E-07

0.382

Ρ

0.818

Power of performed test with alpha = 0.050: 0.050

Source of Variation

Between Groups

Residual

Total

One Way Analysis of Variance Thursday, June 14, 2018, 4:29:28 PM

Data source: Leaf Weight in 00428_Stats.JNB SD21 Leaf Weight 2.8 ANOVA

Normality Test (Shapiro-Wilk)	Passed	(P = 0.101)			
Equal Variance Test:	Passed	(P = 0.816)			
Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0.000000	0.001600	0.000839	0.000420
0.3 mg/L 2.8	4	0.000000	0.001830	0.001020	0.000511
1.56 mg/L 2.8	4	0.000000	0.002670	0.001430	0.000713
3.12 mg/L 2.8	4	0.000000	0.002310	0.000850	0.000425
7.8 mg/L 2.8	3	0.000000	0.001920	0.001390	0.000800
Source of Variation	DF	SS	MS	F	P
Between Groups	4	2.86E-06	7.16E-07	0.578	0.684
Residual	14	0.0000174	0.000		
Total	18	0.0000202			

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.684).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 4:30:08 PM

Data source: Leaf Weight in 00428_Stats.JNB SD21 Leaf Weight HS-1 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.952)

Equal Variance Test: Passed (P = 0.378)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.00166	0.000374	0.000187
HS-1 2.8	4	0	0.0016	0.000839	0.00042

Difference 6.62E-05

t = 0.144 with 6 degrees of freedom. (P = 0.890)

95 percent confidence interval for difference of means: -0.00106 to 0.00119

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.890).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 4:30:29 PM

Data source: Leaf Weight in 00428_Stats.JNB SD21 Leaf Weight 0.3 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.306)

Equal Variance Test: Passed (P = 0.628)

Group Name	N	Missing	Mean	Std Dev	SEM
0.3 mg/L	4	0	0.00208	0.00122	0.000609
0.3 mg/L 2.8	4	0	0.00183	0.00102	0.000511

Difference 0.0003

t = 0.318 with 6 degrees of freedom. (P = 0.761)

95 percent confidence interval for difference of means: -0.00169 to 0.00220

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.761).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 4:31:54 PM

Data source: Leaf Weight in 00428_Stats.JNB SD21 Leaf Weight 1.56 0.8v2.8

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Thursday, June 14, 2018, 4:31:54 PM

Data source: Leaf Weight in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
1.56 mg/L	4	0	0.00175	0.00127	0.00352
1.56 mg/L 2.8	4	0	0.00215	0.00169	0.00417

Mann-Whitney U Statistic= 5.000

T = 15.000 n(small) = 4 n(big) = 4 P(est.) = 0.470 P(exact) = 0.486

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.486)

t-test Thursday, June 14, 2018, 4:32:27 PM

Data source: Leaf Weight in 00428_Stats.JNB SD21 Leaf Weight 3.12 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.185)

Equal Variance Test: Passed (P = 0.836)

Group Name	N	Missing	Mean	Std Dev	SEM
3.12 mg/L	4	0	0.00198	0.000924	0.000462
3.12 mg/L 2.8	4	0	0.00231	0.00085	0.000425

Difference -0.0003

t = -0.536 with 6 degrees of freedom. (P = 0.611)

95 percent confidence interval for difference of means: -0.00187 to 0.00120

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.611).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 4:32:45 PM

Data source: Leaf Weight in 00428_Stats.JNB SD21 Leaf Weight 7.8 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.546)

Equal Variance Test: Passed (P = 0.189)

Group Name	N	Missing	Mean	Std Dev	SEM
7.8 mg/L	4	0	0.00149	0.000536	0.000268
7.8 mg/L 2.8	3	0	0.002	0.0014	0.0008

Difference -0.0004

t = -0.587 with 5 degrees of freedom. (P = 0.583)

95 percent confidence interval for difference of means: -0.00234 to 0.00147

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.583).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 14, 2018, 4:33:18 PM

Data source: Leaf Weight in 00428_Stats.JNB SD21 Leaf Weight HS-1vsBA

Normality Test (Shapiro-Wilk) Passed (P = 0.521)

Equal Variance Test: Passed (P = 0.932)

 Group Name
 N
 Missing
 Mean
 Std Dev
 SEM

 HS-1
 4
 0
 0.00166
 0.000374
 0.000187

 100 mg/L BA
 4
 0
 0.001
 0.000399
 0.000199

Difference 0.000483

t = 1.767 with 6 degrees of freedom. (P = 0.128)

95 percent confidence interval for difference of means: -0.000186 to 0.00115

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.128).

Power of performed test with alpha = 0.050: 0.226

Descriptive Statistics: Thursday, June 21, 2018, 11:59:59 AM

Data source: Leaf Number in 00428 Stats.JNB SD21 Leaf Number Descriptive

Data source: Leaf Num	nber in 00428_Stats	INB	SD21 Leaf	Number De	scriptive	
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	0.941	0.258	0.129	0.410
0.3 mg/L	4	0	0.752	0.522	0.261	0.831
1.56 mg/L	4	0	0.524	0.285	0.143	0.454
3.12 mg/L	4	0	0.427	0.186	0.093	0.296
7.8 mg/L	4	0	0.313	0.193	0.097	0.307
HS-1 2.8	4	0	0.463	0.184	0.092	0.293
0.3 mg/L 2.8	4	0	0.757	0.525	0.262	0.835
1.56 mg/L 2.8	4	0	1.244	0.601	0.300	0.956
3.12 mg/L 2.8	4	0	0.475	0.228	0.114	0.363
7.8 mg/L 2.8	4	0	0.196	0.186	0.093	0.296
100 mg/L BA	4	0	0.479	0.299	0.150	0.476
Column	Range	Max	Min	Median	25%	75%
HS-1	0.590	1.313	0.722	0.864	0.778	1.104
0.3 mg/L	1.046	1.222	0.176	0.806	0.310	1.194
1.56 mg/L	0.629	0.941	0.313	0.421	0.344	0.704
3.12 mg/L	0.444	0.667	0.222	0.409	0.293	0.561
7.8 mg/L	0.400	0.600	0.200	0.225	0.200	0.425
HS-1 2.8	0.354	0.632	0.278	0.472	0.306	0.621
0.3 mg/L 2.8	1.158	1.316	0.158	0.778	0.329	1.186
1.56 mg/L 2.8	1.412	2.000	0.588	1.194	0.794	1.694
3.12 mg/L 2.8	0.500	0.688	0.188	0.512	0.294	0.656
7.8 mg/L 2.8	0.400	0.400	0.000	0.192	0.042	0.350
100 mg/L BA	0.600	0.800	0.200	0.458	0.225	0.733
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	SWilk W	SWilk Prob
HS-1	1.540	2.707	0.321	0.16	0.867	0.284
0.3 mg/L	-0.213	-4.678	0.286	0.278	0.859	0.258
1.56 mg/L	1.715	3.009	0.329	0.136	0.819	0.141
3.12 mg/L	0.517	0.548	0.191	0.66	0.987	0.94
7.8 mg/L	1.914	3.680	0.377	0.048	0.717	0.018
HS-1 2.8	-0.068	-5.489	0.289	0.267	0.825	0.155
0.3 mg/L 2.8	-0.146	-3.015	0.215	0.58	0.955	0.745
1.56 mg/L 2.8	0.424	-0.295	0.158	0.71	0.99	0.957
3.12 mg/L 2.8	-0.631	-1.892	0.245	0.456	0.931	0.601
7.8 mg/L 2.8	0.074	-3.744	0.228	0.53	0.934	0.617
100 mg/L BA	0.145	-4.904	0.278	0.31	0.864	0.275
Column	Sum	Sum of Squares				
HS-1	3.763	3.739				
0.3 mg/L	3.01	3.084				
1.56 mg/L	2.095	1.342				
3.12 mg/L	1.707	0.833				
7.8 mg/L	1.25	0.503				
HS-1 2.8	1.854	0.961				
0.3 mg/L 2.8	3.029	3.12				
1.56 mg/L 2.8	4.977	7.275				
3.12 mg/L 2.8	1.9	1.058				
7.8 mg/L 2.8	0.783	0.257				
100 mg/L BA	1.917	1.187				

One Way Analysis of Variance Thursday, June 21, 2018, 12:00:42 PM

Data source: Leaf Number in 00428_Stats.JNB SD21 Leaf Number -100 BA ANOVA

5

18

23

Normality Test (Shapiro-Wilk)	Passed	(P = 0.127)					
Equal Variance Test:	Passed	(P = 0.086)					
Group Name	N	Missing	Mean	Std Dev	SEM		
HS-1	4	0	0.941	0.2580	0.1290		
0.3 mg/L	4	0	0.752	0.5220	0.26100		
1.56 mg/L	4	0	0.524	0.2850	0.1430		
3.12 mg/L	4	0	0.427	0.1860	0.0932		
7.8 mg/L	4	0	0.313	0.1930	0.09660		
100 mg/L BA	4	0	0.479	0.2990	0.1500		
Source of Variation	DF	SS	MS	F	P		

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.099).

1.071

1.747

2.819

0.214

0.0971

0.099

2.208

Power of performed test with alpha = 0.050: 0.325

Between Groups

Residual

Total

One Way Analysis of Variance Thursday, June 21, 2018, 12:02:21 PM

Data source: Leaf Number in 00428_Stats.JNB SD21 Leaf Number 0.8 ANOVA

Normality Test (Shapiro-Wilk)	Passed	d (P = 0.108)			
Equal Variance Test:	Passed	(P = 0.095)			
Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.941	0.2580	0.1290
0.3 mg/L	4	0	0.752	0.5220	0.26100
1.56 mg/L	4	0	0.524	0.2850	0.1430
3.12 mg/L	4	0	0.427	0.1860	0.0932
7.8 mg/L	4	0	0.313	0.1930	0.0966
Source of Variation	DF	SS	MS	F	Р
Between Groups	4	1.03	0.257	2.611	0.078
Residual	15	1.479	0.0986		
Total	19	2.508			

The differences in the mean values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.078).

Power of performed test with alpha = 0.050: 0.374

One Way Analysis of Variance Thursday, June 21, 2018, 12:03:55 PM

Data source: Leaf Number in 00428_Stats.JNB SD21 Leaf Number 2.8 ANOVA

Normality Test (Shapiro-Wilk) Passed (P = 0.650)

Equal Variance Test: Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks
Thursday, June 21, 2018, 12:03:55 PM

Data source: Leaf Number in 00428_Stats.JNB

Group	N	Missing	Median	0.250	0.750
HS-1 2.8	4	0	0.472	0.292	0.626
0.3 mg/L 2.8	4	0	0.778	0.243	1.251
1.56 mg/L 2.8	4	0	1.194	0.691	1.847
3.12 mg/L 2.8	4	0	0.512	0.241	0.672
7.8 mg/L 2.8	4	0	0.192	0.0208	0.375

H = 8.796 with 4 degrees of freedom. (P = 0.066)

The differences in the median values among the treatment groups are not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.066)

t-test Thursday, June 21, 2018, 12:05:40 PM

Data source: Leaf Number in 00428_Stats.JNB SD21 Leaf Number HS-1 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.302)

Equal Variance Test: Passed (P = 0.961)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	0.941	0.258	0.129
HS-1 2.8	4	0	0.463	0.184	0.092

Difference 0.477

t = 3.013 with 6 degrees of freedom. (P = 0.024)

95 percent confidence interval for difference of means: 0.0897 to 0.865

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = 0.024).

Power of performed test with alpha = 0.050: 0.664

t-test Thursday, June 21, 2018, 12:06:00 PM

Data source: Leaf Number in 00428_Stats.JNB SD21 Leaf Number 0.3 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.119)

Equal Variance Test: Passed (P = 0.905)

Group Name	N	Missing	Mean	Std Dev	SEM
0.3 mg/L	4	0	0.752	0.522	0.261
0.3 mg/L 2.8	4	0	0.757	0.525	0.262

Difference -0.0049

t = -0.0131 with 6 degrees of freedom. (P = 0.990)

95 percent confidence interval for difference of means: -0.911 to $0.901\,$

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.990).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 21, 2018, 12:06:27 PM

Data source: Leaf Number in 00428_Stats.JNB SD21 Leaf Number 1.56 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.851)

Equal Variance Test: Passed (P = 0.207)

Group Name	N	Missing	Mean	Std Dev	SEM
1.56 mg/L	4	0	0.524	0.285	0.143
1.56 mg/L 2.8	4	0	1.244	0.601	0.3

Difference -0.7200

t = -2.167 with 6 degrees of freedom. (P = 0.073)

95 percent confidence interval for difference of means: -1.534 to 0.0931

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.073).

Power of performed test with alpha = 0.050: 0.360

t-test Thursday, June 21, 2018, 12:06:55 PM

Data source: Leaf Number in 00428_Stats.JNB SD21 Leaf Number 3.12 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.653)

Equal Variance Test: Passed (P = 0.540)

Group Name	N	Missing	Mean	Std Dev	SEM
3.12 mg/L	4	0	0.427	0.186	0.0932
3.12 mg/L 2.8	4	0	0.475	0.228	0.114

Difference -0.0482

t = -0.328 with 6 degrees of freedom. (P = 0.754)

95 percent confidence interval for difference of means: -0.408 to 0.312

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.754).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 21, 2018, 12:07:17 PM

Data source: Leaf Number in 00428_Stats.JNB SD21 Leaf Number 7.8 0.8v2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.157)

Equal Variance Test: Passed (P = 0.665)

Group Name	N	Missing	Mean	Std Dev	SEM
7.8 mg/L	4	0	0.313	0.193	0.0966
7.8 mg/L 2.8	4	0	0.196	0.1860	0.0929

Difference 0.1170

t = 0.871 with 6 degrees of freedom. (P = 0.417)

95 percent confidence interval for difference of means: -0.211 to 0.445

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.417).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 21, 2018, 12:07:45 PM

Data source: Leaf Number in 00428_Stats.JNB SD21 Leaf Number HS-1vsBA

Normality Test (Shapiro-Wilk) Passed (P = 0.195)

Equal Variance Test: Passed (P = 0.412)

Group Name Ν Missing Std Dev SEM Mean HS-1 4 0.941 0.258 0.129 0 100 mg/L BA4 0 0.479 0.299 0.15

Difference 0.462000

t = 2.337 with 6 degrees of freedom. (P = 0.058)

95 percent confidence interval for difference of means: -0.0218 to 0.945

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.058).

Power of performed test with alpha = 0.050: 0.421

Descriptive Statistics: Thursday, June 21, 2018, 12:13:42 PM

Data source: SD 21 ET30 in 00428 Stats.JNB SD21 MET30 Descriptive

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 Descriptive			ve			
Column	Size	Missing	Mean	Std Dev	Std. Error	C.I. of Mean
HS-1	4	0	9.250	0.500	0.250	0.796
0.3 mg/L	4	0	9.500	0.577	0.289	0.919
1.56 mg/L	4	0	9.750	0.500	0.250	0.796
3.12 mg/L	4	0	22.000	0.000	0.000	0.000
7.8 mg/L	4	0	22.000	0.000	0.000	0.000
HS-1 2.8	4	0	9.250	0.500	0.250	0.796
0.3 mg/L 2.8	4	0	9.250	0.500	0.250	0.796
1.56 mg/L 2.8	4	0	9.500	0.577	0.289	0.919
3.12 mg/L 2.8	4	0	9.750	0.500	0.250	0.796
7.8 mg/L 2.8	4	0	21.500	1.000	0.500	1.591
100 mg/L BA	4	0	22.000	0.000	0.000	0.000
Column	Range	Max	Min	Median	25%	75%
HS-1	1.000	10.000	9.000	9.000	9.000	9.500
0.3 mg/L	1.000	10.000	9.000	9.500	9.000	10.000
1.56 mg/L	1.000	10.000	9.000	10.000	9.500	10.000
3.12 mg/L	0.000	22.000	22.000	22.000	22.000	22.000
7.8 mg/L	0.000	22.000	22.000	22.000	22.000	22.000
HS-1 2.8	1.000	10.000	9.000	9.000	9.000	9.500
0.3 mg/L 2.8	1.000	10.000	9.000	9.000	9.000	9.500
1.56 mg/L 2.8	1.000	10.000	9.000	9.500	9.000	10.000
3.12 mg/L 2.8	1.000	10.000	9.000	10.000	9.500	10.000
7.8 mg/L 2.8	2.000	22.000	20.000	22.000	21.000	22.000
100 mg/L BA	0.000	22.000	22.000	22.000	22.000	22.000
Column	Skewness	Kurtosis	K-S Dist.	K-S Prob.	SWilk W	SWilk Prob
HS-1	2.000	4.000	0.441	0.006	0.63	0.001
0.3 mg/L	0.000	-6.000	0.307	0.203	0.729	0.024
1.56 mg/L	-2.000	4.000	0.441	0.006	0.63	0.001
3.12 mg/L	0.000	-6.000	0	<0.001	0	<0.001
7.8 mg/L	0.000	-6.000	0	<0.001	0	<0.001
HS-1 2.8	2.000	4.000	0.441	0.006	0.63	0.001
0.3 mg/L 2.8	2.000	4.000	0.441	0.006	0.63	0.001
1.56 mg/L 2.8	0.000	-6.000	0.307	0.203	0.729	0.024
3.12 mg/L 2.8	-2.000	4.000	0.441	0.006	0.63	0.001
7.8 mg/L 2.8	-2.000	4.000	0.441	0.006	0.63	0.001
100 mg/L BA	0.000	-6.000	0	<0.001	0	<0.001
Column	Sum	Sum of Squares				
HS-1	37	343				
0.3 mg/L	38	362				
1.56 mg/L	39.000	381				
3.12 mg/L	88.000	1936				
7.8 mg/L	88	1936				
HS-1 2.8	37	343				
0.3 mg/L 2.8	37.000	343				
1.56 mg/L 2.8	38	362				
3.12 mg/L 2.8	39	381				
7.8 mg/L 2.8	86.000	1852				
100 mg/L BA	88	1936				
.						

t-test Friday, June 22, 2018, 12:04:38 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1 vs 0.3 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.057) Equal Variance Test: Passed (P = 0.356)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	9.250	0.500	0.250
0.3 mg/L	4	0	9.500	0.577	0.289

Difference -0.25

t = -0.655 with 6 degrees of freedom. (P = 0.537)

95 percent confidence interval for difference of means: -1.184 to 0.684

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.537).

Power of performed test with alpha = 0.050: 0.050

t-test Friday, June 22, 2018, 12:05:45 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1 vs 1.56 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.522)

Equal Variance Test: Passed (P = 1.000)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1	4	0	9.250	0.500	0.250
1.56 mg/L	4	0	9.750	0.500	0.250

Difference -0.5000

t = -1.414 with 6 degrees of freedom. (P = 0.207)

95 percent confidence interval for difference of means: -1.365 to 0.365

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.207).

Power of performed test with alpha = 0.050: 0.131

t-test Friday, June 22, 2018, 12:06:20 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1 vs 3.12 t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Friday, June 22, 2018, 12:06:20 PM

Data source: SD 21 ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	9.000	9.000	9.750
3.12 mg/L	4	0	22.000	22.000	22.000

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.018 P(exact) = 0.029

t-test Friday, June 22, 2018, 12:07:03 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1 vs 7.8 t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Friday, June 22, 2018, 12:07:03 PM

Data source: SD 21 ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	9.000	9.000	9.750
7.8 mg/L	4	0	22.000	22.000	22.000

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.018 P(exact) = 0.029

t-test Thursday, June 21, 2018, 12:21:33 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1vsBA t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Thursday, June 21, 2018, 12:21:33 PM

Data source: SD 21 ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	9.000	9.000	9.750
100 mg/L BA	4	0	22.000	22.000	22.000

Mann-Whitney U Statistic= 0.000

T = 10.000 n(small) = 4 n(big) = 4 P(est.) = 0.018 P(exact) = 0.029

t-test Friday, June 22, 2018, 12:07:34 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1 2.8 vs 0.3 2.8

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Friday, June 22, 2018, 12:07:34 PM

Data source: SD 21 ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1 2.8	4	0	9.000	9.000	9.750
0.3 mg/L 2.8	4	0	9.000	9.000	9.750

Mann-Whitney U Statistic= 8.000

T = 18.000 n(small) = 4 n(big) = 4 P(est.) = 0.849 P(exact) = 1.000

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 1.000)

t-test Friday, June 22, 2018, 12:08:02 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1 2.8 vs 1.56 2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.057)

Equal Variance Test: Passed (P = 0.356)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0	9.250	0.500	0.250
1.56 mg/L 2.8	4	0	9.500	0.577	0.289

Difference -0.2500

t = -0.655 with 6 degrees of freedom. (P = 0.537)

95 percent confidence interval for difference of means: -1.184 to 0.684

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.537).

Power of performed test with alpha = 0.050: 0.050

t-test Friday, June 22, 2018, 12:11:45 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1 2.8 vs 3.12 2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.522)

Equal Variance Test: Passed (P = 1.000)

Group Name	N	Missing	Mean	Std Dev	SEM
HS-1 2.8	4	0	9.250	0.500	0.250
3.12 mg/L 2.8	4	0	9.750	0.500	0.250

Difference -0.5000

t = -1.414 with 6 degrees of freedom. (P = 0.207)

95 percent confidence interval for difference of means: -1.365 to 0.365

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.207).

Power of performed test with alpha = 0.050: 0.131

t-test Friday, June 22, 2018, 12:12:12 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1 2.8 vs 7.8 2.8

Normality Test (Shapiro-Wilk) Passed (P = 0.071)

Equal Variance Test: Passed (P = 0.670)

Group Name Ν Missing Std Dev SEM Mean HS-1 2.8 4 0 9.250 0.500 0.250 1.000 7.8 mg/L 2.8 4 0 21.500 0.500

Difference -12.2500

t = -21.913 with 6 degrees of freedom. (P = <0.001)

95 percent confidence interval for difference of means: -13.618 to -10.882

The difference in the mean values of the two groups is greater than would be expected by chance; there is a statistically significant difference between the input groups (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

t-test Thursday, June 21, 2018, 12:16:49 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 HS-1 0.8 vs 2.8 t-te

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Thursday, June 21, 2018, 12:16:49 PM

Data source: SD 21 ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
HS-1	4	0	9.000	9.000	9.750
HS-1 2.8	4	0	9.000	9.000	9.750

Mann-Whitney U Statistic= 8.000

T = 18.000 n(small) = 4 n(big) = 4 P(est.) = 0.849 P(exact) = 1.000

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 1.000)

t-test Thursday, June 21, 2018, 12:17:07 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 0.3 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.057)

Equal Variance Test: Passed (P = 0.356)

Group Name	N	Missing	Mean	Std Dev	SEM
0.3 mg/L	4	0	9.500	0.577	0.289
0.3 mg/L 2.8	4	0	9.250	0.500	0.250

Difference 0.2500

t = 0.655 with 6 degrees of freedom. (P = 0.537)

95 percent confidence interval for difference of means: -0.684 to 1.184

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.537).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 21, 2018, 12:17:30 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 1.56 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Passed (P = 0.057)

Equal Variance Test: Passed (P = 0.356)

Group Name Ν Missing Std Dev SEM Mean 1.56 mg/L 4 9.750 0.500 0.250 0 $1.56 \, \text{mg/L} \, 2.8$ 4 0 9.500 0.577 0.289

Difference 0.2500

t = 0.655 with 6 degrees of freedom. (P = 0.537)

95 percent confidence interval for difference of means: -0.684 to 1.184

The difference in the mean values of the two groups is not great enough to reject the possibility that the difference is due to random sampling variability. There is not a statistically significant difference between the input groups (P = 0.537).

Power of performed test with alpha = 0.050: 0.050

t-test Thursday, June 21, 2018, 12:19:58 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 3.12 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Thursday, June 21, 2018, 12:19:58 PM

Data source: SD 21 ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
3.12 mg/L	4	0	22.000	22.000	22.000
3.12 mg/L 2.8	4	0	10.000	9.250	10.000

Mann-Whitney U Statistic= 0.000

T = 26.000 n(small) = 4 n(big) = 4 P(est.) = 0.018 P(exact) = 0.029

t-test Thursday, June 21, 2018, 12:21:11 PM

Data source: SD 21 ET30 in 00428_Stats.JNB SD21 MET30 7.8 0.8v2.8 t-test

Normality Test (Shapiro-Wilk) Failed (P < 0.050)

Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Thursday, June 21, 2018, 12:21:11 PM

Data source: SD 21 ET30 in 00428_Stats.JNB

Group	N	Missing	Median	25%	75%
7.8 mg/L	4	0	22.000	22.000	22.000
7.8 mg/L 2.8	4	0	22.000	20.500	22.000

Mann-Whitney U Statistic= 6.000

T = 20.000 n(small) = 4 n(big) = 4 P(est.) = 0.453 P(exact) = 0.686

The difference in the median values between the two groups is not great enough to exclude the possibility that the difference is due to random sampling variability; there is not a statistically significant difference (P = 0.686)

Appendix B. Fort et al. (2017)

Environmental Toxicology and Chemistry, Vol. 36, No. 8, pp. 2217–2226, 2017 © 2017 SETAC

TOXICITY OF SULFIDE TO EARLY LIFE STAGES OF WILD RICE (ZIZANIA PALUSTRIS)

Douglas J. Fort, a.* Kevin Todhunter, Troy D. Fort, Michael B. Mathis, Rachel Walker, Mike Hansel, Scott Hall, Robin Richards, and Kurt Anderson

^aFort Environmental Laboratories, Stillwater, Oklahoma, USA ^bBARR Engineering, Minneapolis, Minnesota, USA ^cRamboll Environ, Brentwood, Tennessee, USA ^dALLETE, Duluth, Minnesota, USA

(Submitted 31 October 2016; Returned for Revision 23 December 2016; Accepted 5 February 2017)

Abstract: The sensitivity of wild rice (Zizania palustris) to sulfide is not well understood. Because sulfate in surface waters is reduced to sulfide by anaerobic bacteria in sediments and historical information indicated that 10 mg/L sulfate in Minnesota (USA) surface water reduced Z. palustris abundance, the Minnesota Pollution Control Agency established 10 mg/L sulfate as a water quality criterion in 1973. A 21-d daily-renewal hydroponic study was conducted to evaluate sulfide toxicity to wild rice and the potential mitigation of sulfide toxicity by iron (Fe). The hydroponic design used hypoxic test media for seed and root exposure and aerobic headspace for the vegetative portion of the plant. Test concentrations were 0.3, 1.6, 3.1, 7.8, and 12.5 mg/L sulfide in test media with 0.8, 2.8, and 10.8 mg/L total Fe used to evaluate the impact of iron on sulfide toxicity. Visual assessments (i.e., no plants harvested) of seed activation, mesocotyl emergence, seedling survival, and phytoxicity were conducted 10 d after dark-phase exposure. Each treatment was also evaluated for time to 30% emergence (ET30), total plant biomass, root and shoot lengths, and signs of phytotoxicity at study conclusion (21 d). The results indicate that exposure of developing wild rice to sulfide at ≥3.1 mg sulfide/L in the presence of 0.8 mg/L Fe reduced mesocotyl emergence. Sulfide toxicity was mitigated by the addition of Fe at 2.8 mg/L and 10.8 mg/L relative to the control value of 0.8 mg Fe/L, demonstrating the importance of iron in mitigating sulfide toxicity to wild rice. Ultimately, determination of site-specific sulfate criteria taking into account factors that alter toxicity, including sediment Fe and organic carbon, are necessary. Environ Toxicol Chem 2017;36:2217–2226. © 2017 SETAC

Keywords: Wild rice Sulfide Toxicity Iron Hydroponics

INTRODUCTION

Historically, the impacts of sulfate, and thus sulfide, toxicity to wild rice (Zizania palustris L.) in Minnesota (USA) have been addressed by using the surface water sulfate water quality standard of 10 mg/L established by the Minnesota Pollution Control Agency [1,2]. To address the practicality of this standard, an initial 21-d hydroponic study was previously performed [3] to determine the toxicity of sulfate to wild rice seeds and seedlings. The results suggested that sulfate does not adversely affect germination and early development of wild rice at concentrations < 5000 mg/L over a 21-d hydroponic exposure period. Some effects found at high sulfate concentrations were also observed in osmotically equivalent chloride treatments, and some sulfate-specific stimulatory effects may be attributable to the effects of sulfate as a plant nutrient. Two endpoints, shoot length and leaf number, appeared to have sulfate-specific toxic responses; however, the remainder of the observed responses were likely the result of a general conductivity-induced stress and not specifically the result of sulfate. Root length appeared to be an especially sensitive endpoint to conductivity-related stress induced by chloride-dominated salt solutions [3].

Sulfate in surface waters is reduced to sulfide by anaerobic bacteria in sediments, and sulfide is known to be much more toxic to aquatic organisms than sulfate. As an extension of the original hydroponics study [3], which examined sulfate toxicity to developing wild rice, sulfide toxicity to early life

stage wild rice was evaluated under varying iron (Fe) concentrations representative of those known to be present in sediment porewaters in Minnesota. The sulfide toxicity threshold under varying Fe concentrations was determined, to facilitate a better understanding of the role of Fe in altering sulfide toxicity. The primary objective of the present study was to determine the toxicity of sulfide to wild rice seeds and seedlings from the State of Minnesota. Preliminary studies were conducted to determine the most appropriate culture media and test conditions, identify sensitive test endpoints, establish a statistically valid experimental design, and determine appropriate sulfide exposure concentrations for the range of wild rice response endpoints selected. These findings will be used to further understand the possible impact of sulfate released into the environment and subsequently reduced to sulfide under varying sediment conditions, and support the efforts to re-evaluate the State of Minnesota's wild rice sulfate water quality standard of $10\,\mathrm{mg/L}$ [2]. Concentration–response data, including 25% inhibitory concentrations (IC25) values, and no- and lowest-observed-effect concentrations (NOEC and LOEC) for the effects of sulfide on wild rice were determined.

MATERIALS AND METHODS

Preliminary studies

Preliminary range-finding studies were conducted to establish the testing conditions necessary to maintain a hydroponic exposure to sulfide, and to determine appropriate sulfide and Fe concentrations for the definitive study. A daily-renewal hydroponic system utilizing a modified Hoagland's solution (HS-1; [4,5]) was used to test the effects of sulfide on 10

^{*} Address correspondence to djfort@fortlabs.com Published online 7 February 2017 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/etc.3759

2218 Environ Toxicol Chem 36, 2017 D.J. Fort et al.

biological endpoints in wild rice seeds and seedlings over 21 d. A summary of the experimental design and conditions is provided in Table 1.

Hydroponic media and test materials

Modified HS-1 solution [4] contained 25% ammonium (molar basis) in a mixture of ammonium and nitrate [3], and served as the base medium and diluent for all test exposures in the definitive study. Deionized water was used to prepare all solutions, and was routinely tested to ensure the absence of various organic and inorganic contaminants. The modified HS-1 macronutrients consisted of 2.55 mM NO₃⁻, 0.92 mM NH₄⁺, $0.12 \,\mathrm{mM} \,\mathrm{H_2PO_4}^-$, $1.10 \,\mathrm{mM} \,\mathrm{K}^+$, and $0.75 \,\mathrm{mM} \,\mathrm{Ca}^{2+}$, $0.50 \,\mathrm{mM}$ $Mg^{2+},$ and $0.50\,mM$ $SO_4{}^{2-}.$ Micronutrients included 46.3 μM boron (B), 14.9 μ M Fe, 0.76 μ M zinc, 0.31 μ M copper, 9 μ M manganese, and $0.50\,\mu\text{M}$ molybdenum. The sulfide toxicity threshold under varying iron concentrations was determined, to facilitate a better understanding of the role of iron in altering sulfide toxicity. All salts were reagent-grade materials obtained from SigmaAldrich (St. Louis, MO; >98% pure). Hydrated sodium sulfide (Na₂S · 9 H₂O, 99.99% pure, Sigma-Aldrich) and ferric chloride (FeCl3, 98.00%, Merck) were used throughout the present study. The sulfide and Fe treatments are identified in Table 1. In addition to the HS-1 (1:4 ammonium:nitrate) negative control (0.8 mg Fe/L), and HS-1 controls containing additional iron (2.8 mg and 10.8 mg Fe/L), a 100-mg boron (B)/L treatment in HS-1 (1:4) media was included as a positive control toxicant. Boron was selected as a positive control based on use in the initial hydroponic study evaluating the toxicity of sulfate and chloride [3].

Wild rice seeds

Wild rice seeds were hand-harvested from Little Round Lake in Becker County, Minnesota (USA; $46^{\circ}58'13.32''N$ and $95^{\circ}44'44.49''W$), sieved through a 4-mm mesh, and then sieved through a 2-mm mesh to remove debris. Seeds were stored at $4^{\circ}C$ in the dark prior to test initiation. The percentage of emergence at day 21 in preliminary studies was 47.5%, and was thus considered acceptable for use based on both preliminary studies and Fort et al. [3], as a relatively modest proportion of Zizania palustris germinate (criteria set at $\geq 30\%$).

Exposure system

Based on the results of preliminary testing, a sulfide exposure series of 0.3, 1.6, 3.1, 7.8, and 12.5 mg/L sulfide was utilized. Test solutions were provided using a static-renewal design in 10-L hydroponic tanks. The hydroponic tanks were plastic aquaria ($\sim\!35\,\mathrm{cm}\times20\,\mathrm{cm}\times15\,\mathrm{cm}$ deep). Each tank was equipped with 1-L baskets with inert mesh to support the seeds and seedlings. One-liter baskets to house seeds and seedlings evaluated on day 10 (visual assessments only) and day 21 (study termination, all endpoints) were placed in each of the 4 replicate tanks per treatment or control. Exposure media were replaced daily using a 70% renewal rate. Treatment tanks were randomly assigned to a position in the exposure system to account for possible variations in temperature and light intensity. Seeds selected for study were

Table 1. Experimental conditions for hydroponic evaluation of sulfide toxicity and impact of iron in Zizania palustris

Sulfide (suspected toxicant) and iron (suspected to interact with sulfide) Test substance Test concentrations Sulfide series: <0.1 (control), 0.3, 1.6, 3.1, 7.8, 12.5 mg/L. Each sulfide series run with either 0.8, 2.8, or 10.8 mg/L Fe Test system (species) Zizania palustris (wild rice) Initial stage Seed, September 8, 2014 seed lot from Little Round Lake (03-0302-00) Exposure period 10-d (mesocotyl emergence phase in dark) and 21-d (free leaf phase). Total exposure period 21 d Selection criteria Seed uniformity, visual quality, and activation Static-renewal (daily) in controlled environmental chambers under anaerobic aquatic phase and aerobic vegetative Exposure system (shoot) phase Exposure route Water (hydroponics) Test vessel 10-L chamber with 1-L sub-basket equipped with mesh bottom supports for seeds Exchange frequency Daily, 0.7 volumes/d Water source Deionized water Media HS-1^a modified with 1:4 ammonia:nitrate Replication 4/treatment 80 seeds/replicate (320 seeds/ treatment or control) Seed density Tanks are placed randomly throughout the experimental area Vessel placement Boric acid (100 mg B/L) Positive control Test performance criteria See Table 6 (control) Test endpoints Daily Activation, mesocotyl emergence, seedling survival, and visual inspection of development (emergence and normalcy of SD 10 Activation, mesocotyl emergence (%), survival, leaf number, and signs of phytotoxicity Conclusion (SD 21) Activation, mesocotyl emergence (%, time to 30% emergence [ET30] if possible), survival, shoot and seminal root length and weight, leaf number, second and free leaf biomass, and signs of phytotoxicity Feeding Nutrient/micronutrients HS-1 modified with 1:4 ammonia:nitrate and either 0.8, 2.8, or 10.8 mg Fe/L Daily, 0.7 volumes renewed Frequency Lighting Photoperiod Dark through SD 10, then 16-h light:8-h dark

sulfate, phosphate, total residual oxidants

aModified Hoaglund's solution.

ammonia, total Fe, nitrate.

Intensity (post SD 10)

pH, ORP, DO, and sulfide

Conductivity, alkalinity, hardness,

Temperature

ORP = oxidation-reduction potential; DO = dissolved oxygen; SD = standard deviation; HS-1 = Hoagland's solution.

 5000 ± 1000 lux (measured daily at water surface)

 $2\times$ /d in all replicates prior to and following renewal

In all replicates, daily, $21\pm2\,^{\circ}\mathrm{C}$ (day), and nightly, $12\,^{\circ}\mathrm{C}\pm2\,^{\circ}\mathrm{C}$ (night)

Initiation (SD 0), SD 7, SD 14, and SD 21 (conclusion) of study in a representative test replicate of each treatment

Environ Toxical Chem 36, 2017

Sulfide toxicity to wild rice 2219

randomly placed in each basket such that 5 seeds were added to each insert basket in accordance with a randomized design chart until each basket contained 80 seeds/replicate (320 total per exposure condition), which was adequate to evaluate concentration-response relationships and assess significant differences in the treatments relative to their respective control (i.e., the HS-1 medium with a given Fe concentration and no sulfide). For the first 10 d of the present study, the seeds were kept in the dark to promote mesocotyl emergence and development. Following the 10-d dark-phase germination and development phase, a combination of incandescent and fluorescent plant growlights was used to provide a 16:8-h light:dark photoperiod at an intensity of 5000 ± 1000 lux (lumens/m²) at the surface of the culture media and plants.

Water temperature was maintained at 21 ± 2 °C (day) and $12\pm2\,^{\circ}\mathrm{C}$ (night). Test solution pH was maintained between 6.0 and 7.5 s.u. in all exposures. Within a given replicate, variation in pH was ± 0.5 s.u. for each daily measurement at time 0 (renewal) and time 24 (immediately prior to subsequent renewal), and over the course of the study. This pH range is well within the range of conditions where wild rice grows naturally. Hypoxic (dissolved oxygen < 2.0 mg/L) conditions were maintained within the hydroponic tanks; the HS-1 test medium was deoxygenated with N2 gas, stored in a sealed carboy until use, and checked for oxygen concentration immediately prior to use. Each hydroponic tank was equipped with a 6-inch, small-bubble air stone to deliver a constant flow of N2 gas to the tank and ensure hypoxic conditions were maintained. For hypoxic root growth and aerobic vegetative growth, the basket was placed in the hydroponic aquaria such that the seeds resided in the culture media approximately 1 cm below the air:media interface. Seeds germinated under hypoxic conditions and mesocotyls developed in aerobic conditions under this design. Plastic wire mesh was placed inside the aquaria to provide a trellis to support vegetative growth above the hypoxic culture media. Sulfide-treated test solutions were prepared daily for use in renewal. Sulfide concentrations in the test solutions were measured prior to and following each daily media renewal using an ion-selective probe. Sulfide stability in the culture media was aided by the N2 gas balance. A summary of the present study conditions is provided in Table 1.

Water quality analyses

In each replicate tank, temperature and light intensity (lux) were measured daily throughout the 21-d study. The dissolved oxygen (aqueous and headspace; US Environmental Protection Agency [USEPA] method 360.1 [6]), pH, oxidation-reduction potential, and sulfide were measured twice daily (i.e., prior to and following solution renewal). The dissolved oxygen, oxidation-reduction potential, and sulfide (USEPA method 9215 [7]) measurements were conducted at the same water depth as seed exposure. In addition, specific conductance (conductivity; USEPA method 120.1 [8]), total hardness (USEPA method 130.2 [9]), total alkalinity (USEPA method 310.1 [10]), total iron (USEPA method 8008 [11]), total residual oxidants (USEPA method 330.5 [12]), ammonia-nitrogen (USEPA method 350.2 [13]), sulfate (USEPA method 375.4 [14]), nitrate (USEPA method 353.2 [15]), and phosphate (USEPA method 365.2 [16]) were measured in the media in a replicate of each treatment on days 0, 7, 14, and 21 (conclusion) of the study [17]. Time-weighted average sulfide concentrations were calculated in accordance with methods of the Organisation for Economic Co-operation and Development, and accounted for the variation in instantaneous concentration over time so that

the area under the time-weighted average is equal to the area under the concentration curve [18].

Data collection and biological endpoints

Visual assessments only (i.e., no plants harvested) of the following endpoints (Table 2) were conducted on day 10 following dark-phase exposure to evaluate: activation (germination), mesocotyl emergence, time to emergence (expressed as the time to 30% emergence [ET30]), seedling survival, free leaf number, and abnormal development including chlorosis (phytotoxicity). Signs of chlorosis and stem or root rot were based on observation using a dissecting microscope as needed. The use of an ET30 was based on previous studies [3] of wild rice emergence revealing that in normal-appearing seeds, between 30% and 60% of mesocotyls emerged over the course of a trial. The mesocotyl emergence acceptance frequency was set at 30% in the previous study with sulfate [3] and the present study. All subbaskets were evaluated for the endpoints mentioned, as well as the following 5 endpoints at study conclusion (day 21): shoot (mesocotyl, coleoptiles, and primary leaf) weight, shoot (mesocotyl, coleoptiles, and primary leaf) length, root (seminal and rootlets) weight, seminal root length, and free leaf biomass. All weights were expressed as dry weight recorded to the nearest 0.1 mg by drying the individual parts of each seedling together in an aluminum pan in an oven at 105 °C for 24 h.

Data analysis

The experimental unit was the replicate and $\alpha = 0.05$. For measurement endpoints (i.e., weights and lengths), replicate level data were based on the mean value for all plants measured in that replicate with the exception of the ET30 data sets, which were based on median values. The statistical tests used to compare the culture media with the sulfide and B positive control differed depending on the data type and distribution for each measurement endpoint. No outliers were identified (Grubbs's test). Data that were expressed as a percentage or proportion were transformed using the arcsine square root before further analysis. No other transformations were used. The IC25 and 95% confidence intervals for appropriate endpoints were determined by linear interpolation. Normal distribution (Shapiro-Wilks' test, $\alpha = 0.05$) and equivalence of variances (Levene's test, $\alpha \!=\! 0.05)$ were performed to determine parametric data sets. For measurement endpoints, comparisons between the treatments and designated controls were performed using one-way analysis of variance (ANOVA) or a nonparametric equivalent (Kruskal-Wallis ANOVA). In all cases, sulfide treatments sharing the same Fe concentration were compared against a control condition containing that same iron concentration. When the initial test was statistically significant, post hoc tests were performed, including the Bonferroni t test for parametric test and Dunn's nonparametric test. Treatment median ET30 values were determined by deriving the median of replicate ET 30 values. The ET30 values for each treatment were compared with their respective controls using a Mann-Whitney U test.

RESULTS

Exposure conditions and sulfide concentrations

Exposure solution pH was maintained at 6.0 to 7.5 s.u. in all replicates of controls and treatments and was ± 0.5 s.u. within a given replicate for each daily measurement. The dissolved oxygen concentrations were maintained at <2.0 mg/L in all 2220 Environ Toxical Chem 36, 2017 D I Fort et al.

Table 2. Effects of sulfide on hydroponic development and growth of Zizania palustris endpoints following 10-d exposure

Treatment				Response ^a		
Sulfide ^b (mg/L)	Iron (mg/L)	Seed activation (%)	Mesocotyl emergence (%)	Seedling survival (%)	Mean free leaf (no.)	Abnormal appearance (%)
< 0.01 (negative control)	0.8°	100.0 (0.0)	29.1 (0.46)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
<0.01 (positive control) ^d	0.8	100.0 (0.0)	8.4° (0.66)	100.0 (0.0)	0.0 (0.0)	$100^{\rm f}(0.0)$
0.3	0.8	100.0 (0.0)	28.8 (0.47)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
1.6	0.8	100.0 (0.0)	27.8 (0.74)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
3.1	0.8	100.0 (0.0)	24.1 (0.46)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
7.8	0.8	100.0 (0.0)	14.4 ^g (0.63)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
12.5	0.8	100.0 (0.0)	$0.0^{g}(0.00)$	- (-)	- (-)	- (-)
< 0.01 (negative control)	2.8	100.0 (0.0)	28.1 (0.63)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
0.3	2.8	100.0 (0.0)	27.5 (0.67)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
1.6	2.8	100.0 (0.0)	26.9 (0.63)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
3.1	2.8	100.0 (0.0)	25.0 (0.47)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
7.8	2.8	100.0 (0.0)	15.6 ^h (0.63)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
12.5	2.8	100.0 (0.0)	$0.0^{h} (0.00)$	- (-)	- (-)	- (-)
< 0.01 (negative control)	10.8	100.0 (0.0)	28.8 (0.67)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
0.3	10.8	100.0 (0.0)	29.1 (0.46)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
1.6	10.8	100.0 (0.0)	27.2 (0.74)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
3.1	10.8	100.0 (0.0)	26.9 (0.63)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
7.8	10.8	100.0 (0.0)	22.2^{i} (1.00)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)
12.5	10.8	100.0 (0.0)	13.8 ⁱ (0.47)	100.0 (0.0)	0.0 (0.0)	0.0 (0.0)

^aMean with standard error of the mean below. Mean of 4 replicates/treatment with 80 seeds/replicate (320 seeds/treatment).

HS-1 = Hoagland's solution.

treatments, and hydroponic chamber temperatures were maintained at $21 \pm 2\,^{\circ}\text{C}$ (day) and $12 \pm 2\,^{\circ}\text{C}$ (night) in all replicates of controls and treatments. A summary of sulfide concentrations based on time-weighted average values measured following test solution renewal (T0) and immediately prior to renewal (T24), along with an evaluation of 24-h sulfide losses in each treatment is presented in Table 3. Inter-replicate percentage coefficient of variation (CV) within the control or a given sulfide exposure was <6% in pre- and post-test solution renewal samples based on time-weighted average concentrations. The interreplicate CV for 24-h sulfide loss based on the time-weighted average concentration was ≤30%. Sulfide loss between 24-h renewals ranged from 15.2 to 23.5% in the 0.8 mg Fe/L treatments, 29.9 to 55.6% in the 2.8 mg Fe/L treatments, and 87.6 to 95.4% in the 10.8 mg Fe/L treatments. The results indicate that nominal and measured sulfide concentrations in freshly prepared test solutions were very similar, but that increased Fe reduced free sulfide concentrations in a manner that was not necessarily a linear function of iron concentrations.

Control and positive control performance

The control (HS-1) seed activation, mesocotyl emergence, and seedling survival were >95%, >30%, and >90%, respectively; on study days 10 (Table 2) and 21 (Table 4), which met validity criteria previously established for hydroponic studies [3]. The HS-1 control plants were compared against those grown in a 100 mg/L B positive control known to induce phytotoxicity. The occurrence of 100% phytotoxicity indicated compliance with the pre-established test acceptability criterion of ≥80% [3]. In contrast, HS-1 plants exhibited no phytotoxicity. Decreased emergence, root length and weight, and free leaf weight, an increase in the median ET30, and

phytotoxicity were observed in wild rice exposed to 100 mg B/L relative to the HS-1 control with 0.8 mg Fe/L.

Sulfide toxicity with 0.8 mg Fe/L

Study day 10. Exposure of wild rice to 7.8 and 12.5 mg/L sulfide decreased emergence relative to the HS-1 control with 0.8 mg Fe/L. Free leaf number was 0 in the control and all treatments (Table 2).

Study day 21. Decreased emergence, root length and weight, and free leaf weight, an increase in the median ET 30, and phytotoxicity were observed in wild rice exposed to 100 mg B/L relative to the HS-1 control with 0.8 mg Fe/L (Table 4). Exposure of wild rice to 3.1, 7.8, and 12.5 mg/L sulfide decreased emergence at day 21 relative to the HS-1 control with 0.8 mg Fe/L. Emergence was greater in seeds exposed to 12.5 mg/L sulfide with 10.8 mg Fe/L than in treatments with 0.8 and 2.8 mg Fe/L. Seeds exposed to 12.5 mg/L sulfide exhibited 21.3% emergence in the presence of 10.8 mg/L Fe compared with no emergence occurring in this same sulfide concentration in the 2 lower Fe conditions. Root length, shoot length, root biomass, shoot biomass, secondary leaf biomass, and leaf number were 0 in seedlings exposed to 12.5 mg/L sulfide with 0.8 mg Fe/L, as a result of no emergence. The ET30 (Table 5) generally increased with increasing sulfide concentration in the 0.8 mg/L Fe series (i.e., longer emergence times indicate toxicity), ranging from a median of 10 d in the control to >21 d in the 7.8 and 12.5 mg/L sulfide treatments. The ET30 values were significantly greater in the 7.8 and 12.5 mg/L sulfide treatments than in other sulfide treatments with these Fe treatments.

Overall, mesocotyl emergence was the most sensitive endpoint, and activation, seedling survival, and phytotoxicity

^bNominal sulfide concentration.

cHS-1 contains 0.8 mg Fe/L. Statistical comparisons made with HS-1 with 0.8, 2.8, or 10.8 mg Fe/L controls depending on treatment set analyzed to hold the nominal Fe constant during analysis. $^{\rm d}100\,{\rm mg/L}$ boric acid (positive control).

eSignificantly less than HS-1 with 0.8 mg Fe/L, t test, p < 0.001.

^fSignificantly greater than HS-1 with 0.8 mg Fe/L, t test, p < 0.001.

Esignificantly less than HS-1 with 0.8 mg Fe/L, Kruskal-Wallis-analysis of variance, Dunn's test, p < 0.05.

^hSignificantly less than HS-1 with 2.8 mg Fe/L, Kruskal–Wallis-analysis of variance, Dunn's test, p < 0.05

Significantly less than HS-1 with 10.8 mg Fe/L, Kruskal–Wallis-analysis of variance, Dunn's test, p < 0.05.

Sulfide toxicity to wild rice Environ Toxicol Chem 36, 2017

Table 3. Measured sulfide concentrations in hydroponic chambers at renewal and 24-h post renewal

		Time-weighted average ^a (mg/L)							
Treatment	Post renewal (T0) ^b	CV (%)	Pre-renewal (T24) ^c	CV (%)	Loss (%)				
HS-1 ^d	< 0.01	_	< 0.01	_	_				
100 mg B/L/wild rice	< 0.01	_	< 0.01	_	_				
0.3 mg/L Sulfide	0.34	1.1	0.26	1.3	23.5				
1.6 mg/L Sulfide	1.56	0.8	1.31	3.1	16.0				
3.1 mg/L Sulfide	3.29	1.5	2.53	2.9	23.1				
7.8 mg/L Sulfide	7.71	0.7	6.54	5.4	15.2				
12.5 mg/L Sulfide	12.52	1.5	10.52	3.8	16.0				
HS-1d + 2.8 mg/L Fe	< 0.01	_	< 0.01	_	_				
0.3 mg/L Sulfide + 2.8 mg/L Fe	0.31	2.1	0.20	1.3	35.5				
1.6 mg/L Sulfide + 2.8 mg/L Fe	1.48	1.8	1.00	1.4	32.4				
3.1 mg/L Sulfide + 2.8 mg/L Fe	3.20	1.3	1.42	2.0	55.6				
7.8 mg/L Sulfide + 2.8 mg/L Fe	7.49	1.3	4.13	1.6	44.9				
12.5 mg/L Sulfide + 2.8 mg/L Fe	11.91	1.5	8.35	0.9	29.9				
$HS-1^{d} + 10.8 mg/L Fe$	< 0.01	_	< 0.01	-	_				
0.3 mg/L Sulfide + 10.8 mg/L Fe	0.33	1.3	0.02	0.0	93.9				
1.6 mg/L Sulfide + 10.8 mg/L Fe	1.52	1.2	0.07	3.4	95.4				
3.1 mg/L Sulfide + 10.8 mg/L Fe	3.21	1.1	0.31	3.6	90.3				
7.8 mg/L Sulfide + 10.8 mg/L Fe	7.25	2.2	0.68	1.5	90.6				
$12.5\mathrm{mg/L}$ Sulfide $+$ $10.8\mathrm{mg/L}$ Fe	11.75	1.6	1.46	3.5	87.6				

^aAnalysis based on Organisation for Economic Co-operation and Development method 211 [6].

 $HS-1 = \widetilde{Hoagland}$'s solution; CV = coefficient of variation.

were the least sensitive endpoints. No emergence occurred in the 12.5 mg/L sulfide treatment containing 0.8 mg Fe/L.

Sulfide toxicity with 2.8 or 10.8 mg Fe/L

Study day 10. Exposure of wild rice to 7.8 or 12.5 mg/L sulfide significantly decreased emergence relative to the HS-1 control in both the 2.8 mg and 10.8 mg Fe/L treatments (Table 2). Leaf number was 0 in the controls and all treatments for both the 2.8 mg and 10.8 mg Fe/L treatments.

Study day 21. Exposure of wild rice to 7.8 or 12.5 mg/L sulfide significantly decreased emergence relative to the HS-1 control in both the 2.8 and 10.8 mg Fe/L treatments (Table 4). Evaluation of the effect of iron concentration on emergence at a given sulfide concentration indicated that the addition of 10.8 mg Fe/L significantly reduced the effects of sulfide on mesocotyl emergence in the 7.8 mg/L sulfide treatments (ANOVA, Bonferroni t test, p < 0.001) and $400 \,\mu\text{M}$ (Kruskal-Wallis-ANOVA, Dunn's test, p < 0.05), compared with equivalent sulfide treatments with the addition of 0.8 and 2.8 mg Fe/L. In the 2.8 mg Fe/L treatment series, the median ET30 ranged from 12 d in the control to >21 d in the 12.5 mg/L sulfide treatment (Table 6). The ET30 values were significantly greater in the 7.8 and 12.5 mg/L sulfide treatments than in other sulfide treatments with these iron treatments. In terms of plants exposed to 10.8 mg Fe/L (Table 6), the median ET30 ranged from 10 d in the control to >21 d in the 12.5 mg/L sulfide treatment. The ET30 values generally increased with increasing sulfide concentrations for these iron concentrations, and the median ET30 values for 7.8 and 12.5 mg/L sulfide were significantly greater than in other sulfide treatments (Mann-Whitney U test, $p \le 0.005$; Table 5). In addition, the ET30 decreased in the 3.1 mg/L sulfide treatment with increasing Fe concentration (Mann–Whitney U test, $p \le 0.05$). Root length, shoot length, root biomass, shoot biomass, secondary leaf biomass, and leaf number were all 0 in seedlings exposed to 12.5 mg/L sulfide with 2.8 mg Fe/L (Table 4). This was because of the lack of emergence in the 12.5 mg/L sulfide with 2.8 mg Fe/L treatment. However, these effects were not observed in the presence of 10.8 mg Fe/L.

2221

Overall, mesocotyl emergence was the most sensitive endpoint, whereas activation, seedling survival, and phytotoxity were the least sensitive endpoints. No emergence occurred at 12.5 mg/L sulfide in the presence of 2.8 mg Fe/L. Mesocotyl emergence, seedling growth, and survival were recorded at 12.5 mg/L sulfide with 10.8 mg Fe/L. Thus, emergence and all root and shoot measures were greater in seeds germinated and grown in the presence of 12.5 mg/L sulfide and 10.8 mg Fe/L than in those exposed to the same amount of sulfide with either 0.8 or 2.8 mg Fe/L. The formation of a fine layer of black plaque was detected on the seminal roots of rice seedlings exposed to 7.8 mg/L sulfide with 2.8 or 10.8 mg/L Fe and 12.5 mg/L sulfide with 10.8 mg/L Fe (Figure 1). The layer of plaque when removed did not produce sufficient material to analyze or investigate further. Sulfide NOEC, LOEC, chronic values (the geometric mean of the NOEC and LOEC values), and IC25 values for each Fe concentration on day 10 and day 21 are presented in Table 6.

DISCUSSION

Mesocotyl emergence was the most sensitive endpoint at sulfide concentrations $\geq 3.1~\text{mg/L}$ with 0.8 mg/L Fe and an IC25 value of 3.9 (3.5–4.3) mg/L sulfide. However, exposure of developing wild rice to sulfide concentrations $\geq 7.8~\text{mg/L}$ (with additions of 2.8 mg and 10.8 mg Fe/L and IC25 values of 7.1 [6.5–7.7] and 9.3 [8.8–9.8] mg/L, respectively) was required to significantly reduce mesocotyl emergence. Furthermore, addition of 10.8 mg/L Fe resulted in reduction of sulfide toxicity compared with lower Fe concentration treatments, based on emergence, changes in median ET30 values, and greater percentage of emergence in seeds exposed to 12.5 mg/L sulfide.

Seed activation, seedling survival, and phytotoxicity were the least sensitive endpoints. Root and shoot growth endpoints were less sensitive than emergence endpoints. The day-21 sulfide chronic values in the 0.8 mg Fe/L series ranged from 2.2 mg/L sulfide for emergence to >12.5 mg/L sulfide for

^bTime-weighted average based on analysis of fresh test solutions. Limit of detection = 0.01 mg/L.

^eTime-weighted average based on analysis of 24 h aged test solutions at prior to renewal of fresh test solutions.

^dModified Hoagland's solution

2222 Environ Toxicol Chem 36, 2017 D.I. Fort et al.

Table 4. Effects of sulfide on hydroponic development and growth of Zizania palustris endpoints after 21-d exposure

Treatment		Response ^a									
Sulfide ^b (mg/L)	Iron (mg/L)	Seed activation (%)	Mesocotyl emergence (%)	Seedling survival (%)	Mean seminal root biomass (g, dry wt)	Mean seminal root length (cm)	Mean shoot biomass (g, dry wt)	Mean shoot length (cm)	Mean 2° leaf biomass (g, dry wt)	Mean free leaf (no.)	Abnormal appearance (%)
<0.01 (negative control)	0.8°	100.0 (0.0)	44.1 (0.46)	100.0 (0.0)	0.0016 (0.0002)	6.588 (0.301)	0.0044 (0.0003)	2.567 (0.123)	0.0088 (0.0007)	2.8 (0.2)	0.0 (0.0)
<0.01 (positive control) ^d	0.8	100.0 (0.0)	8.8° (0.47)	100.0 (0.0)	$0.0010^{\rm f} \ (0.0001)$	3.566 ^f (0.218)	0.0039 (0.0004)	2.330 (0.150)	0.0057 ^g (0.0010)	2.5 (0.4)	100 ^h (0.0)
0.3	0.8	100.0 (0.0)	43.1 (0.41)	100.0 (0.0)	0.0016 (0.0001)	6.012 (0.229)	0.0038 (0.0002)	2.456 (0.116)	0.0084 (0.0011)	2.7 (0.3)	0.0 (0.0)
1.6	0.8	100.0 (0.0)	41.6 (0.66)	100.0 (0.0)	0.0020 (0.0002)	5.453 (0.238)	0.0035 (0.0002)	2.309 (0.076)	0.0068 (0.0006)	3.0 (0.2)	0.0 (0.0)
3.1	0.8	100.0	36.6 ⁱ (0.66)	100.0 (0.0)	0.0016 (0.0002)	5.434 (0.345)	0.0038 (0.0002)	2.468 (0.092)	0.0075 (0.0009)	2.8 (0.1)	0.0 (0.0)
7.8 12.5	0.8	100.0 (0.0) 100.0	24.4 ⁱ (0.41) 0.0 ⁱ (0.00)	100.0 (0.0) - (-)	0.0014 (0.0002) - (-)	4.915 (0.386) - (-)	0.0040 (0.0003) - (-)	2.840 (0.098) - (-)	0.0081 (0.0009) - (-)	3.6 (0.3)	0.0 (0.0)
<0.01	2.8	(0.0) 100.0	45.0 (0.67)	100.0	0.0016	4.790	0.0042	2.511	0.0073	3.2 (0.2)	0.0 (0.0)
(negative	2.0	(0.0)	15.0 (0.07)	(0.0)	(0.0001)	(0.155)	(0.0003)	(0.078)	(0.0008)	3.2 (0.2)	0.0 (0.0)
0.3	2.8	100.0 (0.0)	43.4 (0.46)	100.0 (0.0)	0.0019 (0.0002)	5.315 (0.283)	0.0041 (0.0004)	2.531 (0.075)	0.0069 (0.0009)	3.1 (0.2)	0.0 (0.0)
1.6	2.8	100.0 (0.0)	40.9 (0.46)	100.0 (0.0)	0.0017 (0.0001)	5.890 (0.427)	0.0043 (0.0004)	2.571 (0.136)	0.0074 (0.0009)	3.7 (0.2)	0.0 (0.0)
3.1	2.8	100.0 (0.0)	40.0 (0.67)	100.0 (0.0)	0.0014 (0.0001)	5.506 (0.290)	0.0038 (0.0002)	2.615 (0.125)	0.0066 (0.0008)	3.1 (0.2)	0.0 (0.0)
7.8 12.5	2.8 2.8	100.0 (0.0) 100.0	32.8 ^j (0.57) 0.0 ^k (0.00)	(0.0)	0.0013 (0.0001)	5.127 (0.403)	0.0035 (0.0005)	2.331 (0.131)	0.0066 (0.0010)	2.6 (0.3)	0.0 (0.0)
<0.01	0.8	(0.0) 100.0	46.3 (0.47)	- (-) 100.0	- (-) 0.0016	- (-) 5.356	- (-) 0.0035	- (-) 2.431	- (-) 0.0072	- (-) 2.9 (0.2)	- (-) 0.0 (0.0)
(negative control)	0.0	(0.0)	40.5 (0.47)	(0.0)	(0.0001)	(0.299)	(0.0002)	(0.112)	(0.0009)	2.5 (0.2)	0.0 (0.0)
0.3	10.8	100.0 (0.0)	45.9 (0.46)	100.0 (0.0)	0.0012 (0.0001)	5.120 (0.285)	0.0034 (0.0001)	2.293 (0.124)	0.0073 (0.0005)	2.5 (0.2)	0.0 (0.0)
1.6	10.8	100.0 (0.0)	43.4 (0.66)	100.0 (0.0)	0.0014 (0.0001)	4.576 (0.221)	0.0032 (0.0002)	1.962 (0.071)	0.0061 (0.0006)	2.8 (0.3)	0.0 (0.0)
3.1	10.8	100.0 (0.0)	45.6 (0.63)	100.0 (0.0)	0.0015 (0.0001)	5.402 (0.078)	0.0041 (0.0002)	2.784 (0.080)	0.0082 (0.0004)	3.3 (0.2)	0.0 (0.0)
7.8	10.8	100.0 (0.0)	41.9 ¹ (0.63) 21.3 ^m (0.67)	100.0	0.0015 (0.0001)	4.640 (0.287)	0.0038 (0.0002)	2.542 (0.065)	0.0078 (0.0005)	2.9 (0.1)	0.0 (0.0)
12.5	10.8	100.0 (0.0)	21.5 (0.67)	100.0 (0.0)	0.0014 (0.0001)	5.522 (0.288)	0.0038 (0.0003)	2.776 (0.120)	0.0091 (0.0007)	3.3 (0.1)	0.0 (0.0)

^aMean with standard error of the mean below. Mean of 4 replicates/treatment with 80 seeds/replicate (320 seeds/treatment).

seed activation, survival, and phytotoxicity endpoints. The sulfide chronic values for replicates exposed to 2.8 mg and 10.8 mg Fe/L ranged from 4.9 mg/L sulfide for emergence to >12.5 mg/L sulfide for seed activation, survival, and phytotoxicity endpoints, providing evidence of a trend toward decreased sulfide toxicity with increased Fe concentration. Historical studies of sulfide toxicity were reviewed by Lamers et al. [19]. Although no studies with wild rice were included, studies with Oryza sativa (Asian rice) in hydroponic culture showed reduced productivity at 5 mg/L sulfide [20] and 0.9 mg/L sulfide [21], and radial oxygen loss and reduced at nutrient uptake at 0.3 to 1.9 mg/L sulfide [22]. More recently, Pastor et al. [23] demonstrated sulfide toxicity to wild rice at 0.3 mg/L sulfide, which was markedly less than that found in the present study.

^bNominal sulfide concentration.

cHS-1 contains 0.8 mg Fe/L. Statistical comparisons made without HS-1 with 0.8, 2.8, or 10.8 mg Fe/L controls depending on treatment set analyzed to hold the nominal Fe constant during analysis. d100 mg/L boric acid (positive control).

Significantly less than HS-1 with 0.8 mg Fe/L, t test, p < 0.001. Significantly less than HS-1 with 0.8 mg Fe/L, t test, p = 0.005. Significantly less than HS-1 with 0.8 mg Fe/L, t test, p = 0.025. Significantly greater than HS-1 with 0.8 mg Fe/L, t test, p < 0.001.

Significantly less than HS-1 with 0.8 mg Fe/L, Kruskal-Wallis-analysis of variance, Dunn's test, p < 0.05.

¹Significantly less than HS-1 with 2.8 mg Fe/L, Kruskal-Wallis-analysis of variance, Dunn's test, p < 0.05.

kSignificantly less than HS-1 with 2.8 mg Fe/L, Kruskal-Wallis-analysis of variance, Dunn's test, p < 0.05.

Significantly less than HS-1 with 10.8 mg Fe/L, Kruskal–Wallis-analysis of variance, Dunn's test, p < 0.05. mSignificantly less than HS-1 with 10.8 mg Fe/L, Kruskal–Wallis-analysis of variance, Dunn's test, p < 0.05.

HS-1 = Hoagland's solution.

Sulfide toxicity to wild rice

Environ Toxical Chem 36, 2017

2223

Table 5. Median emergence time endpoint in wild rice exposed to sulfide in the presence of iron on day 21a

			N	Median emergence	time (d)		
Treatment iron (mg/L)	HS-1 ^b	$100\mathrm{mg/L}$ BAc	$0.3\mathrm{mg/L}~\mathrm{S}^{2-}$	$1.6\mathrm{mg/L}~\mathrm{S}^{2-}$	3.1 mg/L S ²⁻	$7.8\mathrm{mg/L}~\mathrm{S}^{2-}$	12.5 mg/L S ²⁻
0.8	10	>21 ^d	11	12	15	>21 ^d	>21 ^d
2.8 10.8	12 10	- -	12 10	12 12	12° 12°	19 ^f 15 ^g	$>21^{\rm d} > 21^{\rm b}$

^aBased on time (in days) required to achieve 30% emergence.

Table 6. Summary of numerical endpoints determined on days 10 and 21^a

		Da	y 10			Da	y 21	
Endpoint	NOEC ^b (mg/L S ²⁻)	LOEC ^c (mg/L S ²⁻)	ChV ^d (mg/L S ²⁻)	IC25 ^e (mg/L S ²⁻)	NOEC (mg/L S ²⁻)	LOEC (mg/L S ²⁻)	ChV (mg/L S ²⁻)	IC25 (mg/L S ²⁻)
Sulfide + 0.8 mg Fe/L								
Activation	12.5	>12.5	>12.5	>12.5	12.5	>12.5	>12.5	>12.5
Emergence (%) ^f	3.1	7.8	4.9	3.5 (3.1-3.9)	1.6	3.1	2.2	3.9 (3.5-4.3)
Emergence (ET30) ^f	_	_	_	_	3.1	7.8	4.9	-
Survival	12.5	>12.5	>12.5	>7.8 ^g	12.5	>12.5	>12.5	>7.8 ^g
Shoot weight	_	_	_	_	7.8	12.5	9.8	>7.8 ^g
Shoot length	_	_	_	_	7.8	12.5	9.8	>7.8 ^g
Root weight	_	_	_	_	7.8	12.5	9.8	>7.8 ^g
Root length	_	_	_	_	7.8	12.5	9.8	7.6 (7.1-8.1)
Leaf number	12.5	>12.5	>12.5	>7.8 ^g	7.8	12.5	9.8	>7.8g
Leaf biomass	_	_	_	_	7.8	12.5	9.8	>7.8 ^g
Phytotoxicity	12.5	>12.5	>12.5	>7.8 ^g	12.5	>12.5	>12.5	>7.8 ^g
Sulfide + 2.8 mg Fe/L								
Activation	12.5	>12.5	>12.5	>12.5	12.5	>12.5	>12.5	>12.5
Emergence (%) ^f	3.1	7.8	4.9	5.7 (5.3-6.1)	3.1	7.8	4.9	7.1 (6.5–7.7)
Emergence (ET30) ^f	_	_	_	_	3.1	7.8	4.9	_
Survival	12.5	>12.5	>12.5	>7.8 ^g	12.5	>12.5	>12.5	>7.8g
Shoot weight	_	_			7.8	12.5	9.8	>7.8 ^g
Shoot length	_	_	_	_	7.8	12.5	9.8	>7.8g
Root weight	_	_	_	_	7.8	12.5	9.8	>7.8 ^g
Root length	_	_	_	_	7.8	12.5	9.8	>7.8 ^g
Leaf number	12.5	>12.5	>12.5	>7.8 ^g	7.8	12.5	9.8	>7.8g
Leaf biomass	_			-	7.8	12.5	9.8	>7.8g
Phytotoxicity	12.5	>12.5	>12.5	>7.8g	12.5	>12.5	>12.5	>7.8g
Sulfide + 10.8 mg Fe/L		,	,	, ,,,,		,	,	,
Activation	12.5	>12.5	>12.5	_	12.5	>12.5	>12.5	>12.5
Emergence (%)	3.1	7.8	4.9	8.5 (8.2-8.8)	3.1	7.8	4.9	9.3 (8.8–9.8)
Emergence (ET30)	_	_	_	-	3.1	7.8	4.9	-
Shoot weight	_	_	_	>12.5 ^g	12.5	>12.5	>12.5	>12.5 ^g
Shoot length	_	_	_	-	12.5	>12.5	>12.5	>12.5 ^g
Root weight	_	_	_	_	12.5	>12.5	>12.5	>12.5 ^g
Root length	_	_	_	_	12.5	>12.5	>12.5	>12.5 ^g
Leaf number	12.5	>12.5	>12.5	>12.5 ^g	12.5	>12.5	>12.5	>12.5 ^g
Leaf biomass	-	_ 12.3	× 12.5	_ 12.5	12.5	>12.5	>12.5	>12.5 ^g
Phytotoxicity	12.5	>12.5	>12.5	>12.5 ^g	12.5	>12.5	>12.5	>12.5 ^g

^aNominal concentrations.

Position of this (in taky) requires a state of the boundary of the position o gSignificantly greater than HS-1with 10.8 mg Fe/L Mann–Whitney U test, p = 0.001.

BA = boric acid; HS-1 = Hoagland's solution.

^bNo-observed-effects concentration.

^cLowest-observed-effects concentration.

dChronic value (geometric mean of NOEC and LOEC value). Represents the estimated threshold of toxicity.

25% inhibitory concentration determined by linear interpolation with 95% confidence intervals in parentheses.

^fNo emergence recorded at 12.5 mg S²⁻/L.

Reported as greater than highest concentration in which mesocotyl emergence was observed. No emergence was noted in the 12.5 mg S²-/L treatment with either 0.8 or 2.8 mg Fe/L.

NOEC = no-observed-effects concentration; LOEC = lowest-observed-effects concentration; ChV = chronic values; IC25 = 25% inhibitory concentration; ET30 = time to 30% emergence.

2224 Environ Toxicol Chem 36, 2017 D.J. Fort et al.

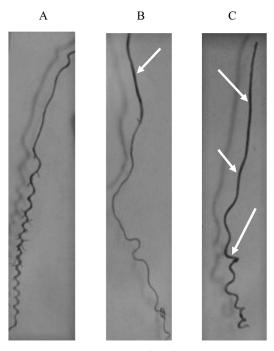


Figure 1. Representative seminal roots from (A) HS-1 control containing <0.01 mg/L sulfide and 0.8 mg/L Fe, (B) 7.8 mg/L sulfide with 2.8 mg/L Fe. and (C) 7.8 mg/L sulfide with 10.8 mg/L Fe. Note normal root fibers and absence of iron sulfide (FeS) plaque in seminal root from the control (A), increase in the formation of FeS plaque at the upper region (arrow) of the root in seminal root from the 7.8 mg/L sulfide with 2.8 mg/L Fe treatment (B), and more widespread FeS plaque (arrows) formed on the seminal root from the 7.8 mg/L sulfide with 10.8 mg/L Fe treatment (C).

However, the effects measured were on juvenile seedling growth and development using seedlings produced from seeds that were allowed to germinate and grow to 1 to 2 cm (over 5-7 d) in aerobic deionized water, whereas the present study initiated exposure in ungerminated seeds. Both studies utilized a modified Hoagland's solution [4,5], with the studies by Pastor et al. [23] containing one-fifth strength solution and 5 mM piperazine-N,N'-bis buffer and the present study using modified HS-1 solution [4] containing 25% ammonium (molar basis) in a mixture of ammonium and nitrate. The hydroponics design [24] used total hypoxia to maintain sulfide levels, but exposed the vegetative portion of the rice plants to levels of sulfide much greater than would be expected in nature. The design of the hydroponics system used in the present study allowed the seed, mesocotyl, and early primary leaf (shoot) to be exposed to the hypoxic media with sulfide, which was supported by peer review of studies supporting the re-evaluation of the State of Minnesota's surface water quality standard for sulfate [1,2]. More ecologically realistic test conditions were recommended by peer review [24], and thus the basis for the design was a scaled-down model of ponds in which wild rice grows naturally. The primary differences between the laboratory hydroponics study and rice growing naturally were the lack of sediment in the simplified, but highly controlled hydroponics and omission of the floating leaf phase. In the case of the hydroponics, allowing a floating leaf phase would have resulted in artificially greater exposure to sulfide because of the high levels of sulfide in the media, which are not generally present at the surface of pond water. Oxidation of free sulfide in the water column resulting from greater oxygen levels naturally reduces free sulfide levels exposed to the floating leaves of wild rice.

Based on measured sulfide concentrations, Fe substantially reduced free sulfide concentrations in the 10.8 mg Fe/L treatment relative to the 0.8 mg Fe/L treatment. The effect of $2.8\,\mathrm{mg}$ Fe/L on free sulfide concentrations fell between the 0.8and 10.8 mg Fe/L treatments. These observations, combined with differences in wild rice responses to sulfide across different iron concentrations, demonstrate the ability of Fe to reduce sulfide toxicity to wild rice. Free sulfide loss between 24-h renewals ranged from 19.6 to 23.5% with 0.8 mg Fe/L, 32.4 to 55.6% with 2.8 mg Fe/L, and 87.6 to 95.4% with 10.8 mg Fe/L, based on time-weighted average measurements. The loss was presumably partly the result of degradation, but primarily complexation with iron. These results provide evidence that Fe reduces free sulfide concentrations, but not necessarily as a linear function of Fe concentration [25-27]. Sulfide levels in pond sediment are determined by sulfate levels, availability, temperature, oxidation-reduction potential, pH, total organic carbon, Fe²⁺ levels, and speciation [21.28]. In some cases. carbon, Fe^{2+} levels, and speciation [21,28]. In some cases, sediment Fe^{2+} concentration may be inadequate to detoxify the sulfide by deposition of iron sulfide (FeS), and only some sediment will exist as FeS, even with large amounts of Fe. Although less toxic than sulfide, FeS can adversely affect the root systems of aquatic plants. Sensitivity of grass species (including wild rice) to sulfide has been studied for many years. Since the late 1950s, sulfide phytotoxicity has been described historically by rotting roots, black (FeS plaque) root, leaf discoloration, and poor growth and yield [29-31] because of sulfide-induced nutritional deficiencies resulting from poor uptake and utilization of critical nutrients [20,22,29-33]. These deficiencies result in potential inhibition of various oxidases, compromising metabolic capacity, inducing oxidative stress, and reducing gas exchange [34-38] in the root systems. Detoxification of sulfide by rice requires radial oxygen loss from roots to the rhizosphere as described by Armstrong and Armstrong [29]. These investigators provided the first specific anatomical assessment of radial oxygen loss inhibition by sulfide, blockage of vascular systems, and inhibition of lateral root emergence in rice, which correspond to the toxicological impact on the rice plant. Armstrong and Armstrong [29] found that adventitious and fine lateral roots of rice exposed to sulfide had reduced radial oxygen loss to the rhizosphere atomically characterized as being thickened, resulting in inhibition of the apical cortical gas space system. More recent studies [39,40] have demonstrated mitochondria-based detoxification of sulfide primarily in the roots. Functional isoforms of O-acetylserine-(thiol)lyase C (OASTL), specifically OAS-C, detoxify sulfide primarily in the roots [41] by catalyzing the conversion of sulfide and O-acetylserine to cysteine.

In the present study, black plaque was found on the seminal roots exposed to >7.8 mg/L sulfide and 2.8 or 10.8 mg/L Fe. However, root blackening is often observed in plants growing in sulfide-laden sediment. In the present hydroponics study, limited root blackening was found, as expected, because sediment cofactors such as organic carbon and microbial flora are likely required to facilitate the process. Although it is plausible that OAS-C was responsible for detoxifying a portion of the sulfide to which the wild rice seedlings were exposed in the present study; based on the daily rate of sulfide decay (~30%), the seedlings were still exposed to a significantly high level of free sulfide during the study. Thus, enzymatic sulfide detoxification in the roots cannot explain the decreased toxicity of sulfide we observed even at

Sulfide toxicity to wild rice Environ Toxicol Chem 36, 2017 2225

the lower Fe concentration on a physiological level. Sulfide toxicity to wild rice is also tissue dependent, with the mesocotyl and roots being less susceptible to free sulfide toxicity and the photosynthetic portion being more susceptible to sulfide. On a larger scale, to properly evaluate sulfide toxicity to wild rice, both free sulfide and complexed sulfide need to be considered, based on the appearance of black plaque on the roots of wild rice seedlings from the higher sulfide and Fe treatments and the reduction in free sulfide toxicity by Fe found in the present study.

CONCLUSIONS

The results of the present study indicate that exposure of developing wild rice (mesocotyl emergence) to sulfide-induced toxicity $\geq 3.1\,\mathrm{mg/L}$ sulfide in the presence of $0.8\,\mathrm{mg}$ Fe/L, and $\geq 7.8\,\mathrm{mg/L}$ sulfide in the presence of $2.8\,\mathrm{mg/L}$ sulfide in the presence of $2.8\,\mathrm{mg/L}$ sulfide in the presence of $2.8\,\mathrm{mg/L}$ sulfide in the presence was the most sensitive endpoint, and growth endpoints were less sensitive. Increasing Fe concentrations reduced the toxic effects of sulfide to wild rice. Ultimately, determination of site-specific sulfate criteria considering factors that alter toxicity, including sediment Fe and organic carbon, are necessary to adequately address the potential impact of sulfate in surface waters. Additional study of the larger significance of the hydroponics study is warranted, taking into account an aquatic life cycle evaluation of sediment sulfide toxicity to wild rice using a sediment microcosm.

Acknowledgment—The authors thank G. Blaha, E. Swain, and the Minnesota Pollution Control Agency (MPCA) for providing the wild rice seeds used in the present study. Funding was provided by the Minnesota Chamber of Commerce.

Data availability—Data, associated metadata, and calculation tools are available from the corresponding author (djfort@fortlabs.com)

REFERENCES

- Aiken SG, Lee PF, Punter D, Stewart JM. 1988. Wild Rice in Canada. Agriculture Canada Publication 1830. NC Press, Toronto, ON, Canada.
- 2. Moyle JB. 1944. Wild rice in Minnesota. J Wildl Manag 8:177–184.
- Fort DJ, Mathis MB, Walker R, Tuominen LK, Hansel M, Hall S, Richards R, Grattan SR, Anderson K. 2014. Toxicity of sulfate and chloride to early life stages of wild rice (*Zizania palustris*). Environ Toxicol Chem 33:2802–2809.
- Malvick DK, Percich JA. 1993. Hydroponic culture of wild rice (Zizania palustris L.) and its application to studies of silicon nutrition and fungal brown spot disease. Can J Plant Sci 73:969–975.
- Hoagland DR, Arnon DI. 1950. The water-culture methods for growing plants without soil. Circular 347. University of California Agricultural Experiment Station, Berkley, CA, USA.
- US Environmental Protection Agency. 1971. Method No. 360.1 Oxygen, dissolved (Membrane electrode). Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.
- US Environmental Protection Agency. 1996. Method No. 9215: Potentiometric determination of sulfide in aqueous samples and distillates with ion-selective electrode. Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.
- US Environmental Protection Agency. 1982. Method No. 120.1: Conductance (specific conductance, μmhos at 25 °C) by conductivity meter. Methods for the Chemical Analysis of Water and Wastes. EPAI 600/4-79/020. Cincinnati, OH.
- US Environmental Protection Agency. 1982. Method No. 130.2: Hardness, total (mg/L as CaCO₃) (titrimetric, EDTA). Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.
- US Environmental Protection Agency. 1978. Method No. 310.1: Alkalinity (titrimetric, pH 4.5). Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.
- US Environmental Protection Agency. 2007. Method No. 8008: Iron, total Ferro Verr[®] method. Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.

 US Environmental Protection Agency. 1978. Method No. 330.5: Chlorine, total residual (spectrophotometric, DPD). Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.

- US Environmental Protection Agency. 1974. Method No. 350.2: Nitrogen, ammonia (colorimetric, titrimetric, potentiometric distillation procedure). Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.
- US Environmental Protection Agency. 1978. Method No. 375.4: Sulfate (turbidimetric). Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.
- US Environmental Protection Agency. 1993. Method No. 353.2: Determination of nitrate-mitrite nitrogen by automated colormetry. Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.
- US Environmental Protection Agency. 1971. Phosphorous, all forms (colorimetric, ascorbic acid, single reagent). Methods for the Chemical Analysis of Water and Wastes. EPA/600/4-79/020. Cincinnati, OH.
- US Environmental Protection Agency. 1983. Method for chemical analysis of water and wastes. EPA 600/4-79/020. Washington DC.
- Organisation for Economic Co-operation and Development. 1998. Test No. 211: Daphnia Magna reproduction test. OECD Guidelines for the Testing of Chemicals. Paris France.
- Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Katwijk MM, Van der Heide T, Roelofs JGM, Smolders AJP. 2013. Sulfide as a soil phytotoxin—A review. Front Plant Sci 4:1–14.
- Tanaka A, Ranjit P, Mulleriyawa RP, Yasu T. 1968. Possibility of hydrogen sulphide induced iron toxicity of the rice plant. Soil Sci Plant Nutr 14:1-6.
- Hollis JP, Allam AI, Pitts G, Joshi MM, Ibrahim IKA. 1975. Sulphide diseases of rice on iron-excess soils. Acta Phytopathol Acad Sci Hung 10:329–341.
- Joshi MM, Ibrahim IKA, Hollis JP. 1975. Hydrogen sulphide: Effects on the physiology of rice plants and relation to straighthead disease. *Phytopathology* 65:1165–1170.
- Pastor J, Dewey B, Johnson NW, Swain EB, Monson P, Peters EB, Mybro A. 2017. Effects of sulfate and sulfide on the life cycle of *Zizania palustris* in hydroponic and mesocosm experiments. *Ecol Appl* 27:321–336.
- Eastern Research Group. 2014. Summary Report of the Meeting to Peer Review MPCA's Draft Analysis of the Wild Rice Sulfate Standard Study. Arlington, VA, USA.
- Smolders AJP, Nijboer RC, Roelofs JGM. 1995. Prevention of sulphide accumulation and phosphate mobilization by the addition of iron (II) chloride to reduced sediment: An enclosure experiment. Freshw Biol 34:247–253.
- Lamers LPM, Falla SJ, Samborska EM, Van Dulken IAR, Van Hengstrum G, Roelofs JGM. 2002. Factors controlling the eutrophication and toxicity in sulfate-polluted freshwater wetlands. *Oceanogra*phy 47:585–593.
- Van der Welle MEW, Cuppens M, Lamers LPM, Roelofs JGM. 2006.
 Detoxifying toxicants: Interactions between sulphide and iron toxicity. *Environ Toxicol Chem* 25:1592–1597.
- Connell WE, Patrick WH. 1968. Sulfate reduction in soil: Effects of redox potential and pH. Science 159:86–87.
- Armstrong J, Armstrong W. 2005. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe²⁺ and water uptake and lateral root emergence. *Ann Bot* 96:625–638.
- Baba I, Iwata I. 1963. Akiochi disease of rice plants. In Matsubayashi M, Ito R, Nomoto T, eds, *Theory and Practice of Growing Rice*. Fuji Publishing, Tokyo, Japan, pp 149–158.
- Takijima Y. 1965. Studies on the mechanism of root damage of rice plants in the paddy fields (Part 1). Root damage and growth inhibitory substances found in the peaty and peat soil. Soil Sci Plant Nutr 10:1–8.
- Mitsui S. 1965. Dynamic aspects of nutrient uptake. In Tanaka A, ed, The Mineral Nutrition of the Rice Plant. Johns Hopkins University, Baltimore, MD, USA, pp. 53-62.
- Baltimore, MD, USA, pp 53–62.

 33. Allam AI, Hollis JP. 1972. Sulphide inhibition of oxidases in rice roots.

 Phytopathology 62:634–639.

 34. Armstrong W. 1970. Rhizosphere oxidation in rice and other species; a
- Armstrong W. 1970. Rhizosphere oxidation in rice and other species; a mathematical model based on the oxygen flux component. *Physiol Plant* 23:623–630.
- Mendelssohn IA, McKee KL, Hester M. 1988. Re-examination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am J Bot 75:1352–1359.
- Trolldenier G. 1988. Visualization of oxidizing power of rice roots and of possible participation of bacteria in iron deposition. Z Pflanz Bodenkunde 151:117–121.
- Begg CBM, Kirk GJD, MacKenzie AF, Neue HU. 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytologist 128:469–477.

2226 Environ Toxicol Chem 36, 2017 D.J. Fort et al.

- Revsbech NP, Pedersen O, Reichart W, Briones A. 1999. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. *Biol Fertil Soils* 29: 379–385.
- Alvarez C, Garcia I, Romero LC, Gotor C. 2012. Mitochondrial sulfide detoxification requires a functional isoform o-acetylserine(thiol)lyase c in Arabidopsis thaliana. Mol Plant 596:1217–1226.
- Krubel L, Junemann J, Wirtz M, Birke H, Thornton JD, Browning LW, Poschet G, Hell R, Balk J, Braun HP, Hildebrandt TM. 2014. The mitochondrial sulfur dioxygenase ethylmalonic encephalopathy protein 1 is required for amino acid catabolism during carbohydrate starvation and embryos development in arabidopsis. Plant Physiol 165:92–104.
 Hasler-Sheetal H, Holmer M. 2015. Sulfide intrusion and detoxification
- Hasler-Sheetal H, Holmer M. 2015. Sulfide intrusion and detoxification in the seagrass zostera marina. PLoS One 10:e0129136.