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Executive Summary

My comments relate to Chapter 1, C, D, E and F of the Final Technical Support Document

Refinements to Minnesota’s Sulfate Water Quality Standard to Protect Wild Rice. The data set used in
the study (the “Class B” data set) comprises 108 water bodies. Some analyses use a 96-body subset of
the Class B data set — those water bodies with transparency greater than 30 cm, which is thought to
make them more suitable for wild rice. Relevant variables include four analytes — porewater sulfide,
porewater iron, porewater total organic carbon, and surface water sulfate — abbreviated in the
discussion below to “sulfide, Fe, TOC and SO4.” Also measured was the presence or absence of wild rice,
and (where wild rice was present) its stem density. Analyses were carried out in R Version 3.3.0.
Weisberg (2014) and Fox and Weisberg (2011) are general references to the statistical methodology and
its execution in R.

The analyses led to the conclusions:
1. The waterbody-specific sulfate standard proposed by MPCA does not differentiate waterbodies
hosting wild rice from water bodies that do not.
2. More generally | have been unable to find any function of SO4, TOC and Fe that can differentiate
water bodies hosting wild rice from water bodies that do not.
Sulfide is a statistically significant but weak predictor of wild rice presence.
The MPCA assessment of the proposed sulfate rule’s performance is questionable.
All four analytes vary substantially from time to time within the same water body.
S04, TOC and Fe are statistically significant but imprecise predictors of sulfide.
The proposed sulfide cutoff of 120 ug/L is not well supported and would lead to many false
alarms.
8. A different approach using sulfide in a linear discriminant analysis incorporates explicit
recognition of the implications of false positive and false negatives, and further motivates higher
sulfide cutoffs.

Noukw

In summary, the data presented give little reason to believe that changes in the sulfate standard will
have any effect on the occurrence or health of wild rice, or indeed that a sulfate standard itself is
required. A standard focused directly on sulfide would incur substantial numbers of false positives
(water bodies with high sulfide but abundant wild rice) and false negatives (water bodies with low
sulfide but no wild rice). More detailed study of these water bodies would be required to diagnose their
specific properties and actions needed to enhance wild rice.

Analyses
1. The waterbody-specific sulfate standard proposed by MPCA does not differentiate waterbodies

hosting wild rice from water bodies that do not. This refers to Chapter 1 E Development of an
equation to calculate a numeric sulfate standard for each wild rice water
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The Class B data set discussed in the MPCA document and analyzed here comprises 108 wild rice water
bodies. As there is reason to believe that opaque water is inhospitable to wild rice, some of MPCA'’s
analyses are restricted to 96 water bodies whose transparency exceeds 30 cm. This thinning can be
justified by the observation that 11 of the 12 water bodies excluded did not have wild rice and only one
did.

Directly cross-tabulating all 108 water bodies by the presence or absence of wild rice, and whether their
S04 is above or below the MPCA’s Chapter 1E water-body-specific sulfate limit gives the table:

MPCA limit all water bodies
S04 high S04 low total

Rice absent 24 17 41
present 48 19 67
Total 72 36 108

A formal test of the association between SO4 and wild rice presence is given by Pearson’s chi-squared
test:

Pearson®s Chi-squared test with Yates®™ continuity correction
X-squared = 1.4203, df = 1, p-value = 0.2334

The P value of this test falls far short of statistical significance, confirming the visual impression that the
proposed SO4 limit has no connection to the presence or absence of wild rice in the water body.
Another indication of this is the total concordance — the proportion of water bodies correctly classified
as wild-rice-hospitable or not by whether their SO4 is above or below the limit:

Concordance and CI 39.8% 31.1% 49 2%

In other words, 60% of the water bodies — a majority — would be misdiagnosed by the proposed
standard.

Restricting the analysis to the 96 water bodies with suitable transparency gives the same conclusions:

MPCA Timit 96 water bodies
S04 high S04 low total

Rice absent 18 12 30
present 47 19 66
Total 65 31 96

Pearson®s Chi-squared test with Yates"™ continuity correction
X-squared = 0.7285, df = 1, p-value = 0.3934

Concordance and CI 38.5% 29.4% 48 .5%

FINDING 1: In both the broader and the narrower data sets, there is no association between the
presence or absence of wild rice and whether the SO4 is above or below the waterbody-specific sulfate
limit.

The performance of the proposed sulfate standard for identifying wild rice sites is akin to throwing a
die and declaring the water body good if the die shows a 1 or 2, and bad if the die shows a 3, 4, 5 or 6.
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2. More generally | have been unable to find any function of SO4, TOC and Fe that can differentiate
water bodies hosting wild rice from water bodies that do not.

Concentrating on the 96-water-body data set of sites where the water is transparent enough to be
thought amenable to wild rice, presence or absence can be modeled directly from SO4, TOC and Fe with
a logistic regression:

glm(formula = Presence ~ 10gS04 + logTOC + logFe, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 4.3819 2.4913 1.759 0.0786 .
logS04 -0.5050 0.3309 -1.526 0.1269
logTOC -0.2771 0.4968 -0.558 0.5770
logFe -0.7979 0.6716 -1.188 0.2348

Null deviance: 119.25 on 95 degrees of freedom
Residual deviance: 115.34 on 92 degrees of freedom
Explained 3.91 on 3 degrees of freedom

The overall model has an explained deviance of 3.91 with 3 degrees of freedom for a P value of 0.2713.
Thus neither the overall model, nor any of the terms in it, is statistically significant.

The same conclusion comes from a logistic regression using all 108 water bodies — neither the overall
logistic regression, nor any of its terms, is statistically significant.

Another view of the data set is given by Hoteling’s multivariate T squared test, which tests whether
there is any difference in the triad log(SO4, TOC, Fe) between the water bodies that do and that do not
harbor wild rice. In the 96-water-body set, this test gives:

F-statistic: 1.283 on 3 and 92 DF, p-value: 0.285

confirming the lack of significant difference in these three concentrations between the water bodies
that do and do not host wild rice.

The conclusion then is that these three predictors are not informative about the presence or absence of
wild rice. Any model using them to predict presence or absence of wild rice can be no better than
random guessing.

It is however conceivable that, even though these predictors cannot predict presence or absence of wild
rice, they might nevertheless be able to differentiate water bodies with healthier wild rice. To explore
this possibility, a linear regression of the stem density was fitted with the following results

Call:
Im(formula = Stems ~ 1ogS04 + logFe + logTOC, data = DDt)

Coefficients:
Estimate Std. Error t value Pr(c|t])
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(Intercept) 33.675 47.627 0.707 0.481

logS0o4 -7.481 6.400 -1.169 0.245
logFe 3.840 13.143 0.292 0.771
logTOC -8.925 9.395 -0.950 0.345

Residual standard error: 42.82 on 92 degrees of freedom
Multiple R-squared: 0.01834, Adjusted R-squared: -0.01367
F-statistic: 0.573 on 3 and 92 DF, p-value: 0.6342

Neither the overall regression nor any of the terms in it is statistically significant, showing that SO4, Fe
and TOC are not relevant in this context either.

FINDING 2: Whether for wild rice presence, or for the abundance of the wild rice, SO4, TOC and Fe do
not show any predictive information in the field data.

3. Sulfide is a statistically significant but weak predictor of wild rice presence. This refers to
Chapter 1C. Identification of 120 ug/L as the protective sulfide concentration.

External evidence cited in the document shows the potential for harm to wild rice from sufficiently high
concentrations of sulfide, and sulfide is described in the MPCA document as a primary determinant of
the presence of wild rice. The predictive power for sulfide can be quantified by a logistic regression of
wild rice presence or absence on log sulfide within the full data set. This gives

gIlm(formula = Presence ~ logl0(Sulfide), family = "binomial™)
Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -0.7089 0.4567 -1.552 0.12059
loglO(Sulfide) -1.3373 0.4522 -2.957 0.00311 **

Null deviance: 143.40 on 107 degrees of freedom
Residual deviance: 132.87 on 106 degrees of freedom

On the one hand, logsulfide is indeed a highly statistically significant predictor (P=0.00311).

On the other hand, however, sulfide explains only 10.53, or 7%, of the total deviance in wild rice
presence, leaving the remaining 132.87, or 93% unexplained.

Performing the same calculation on the 96 water body data set gives the same substantive conclusions.
The P value for sulfide in the regression is a 0.0114, still significant though not quite as strong as the full
data set. However in this data set, sulfide explains an even-smaller 6% of the total deviances, leaving
94% unexplained.

This means that while porewater sulfide is a statistically significant part of the picture of wild rice
presence or absence, it is only a modest part of it. Its contribution pales next to that of other
characteristics and variables.

Exploring this further, receiver operating characteristic (ROC) curves are a standard methodology for
exploring the ability of a predictor X to classify cases into a “good” and a “bad” class. The sensitivity
associated with any cutoff Cis the proportion of bad cases whose predictor X exceeds C and which are
therefore correctly classified at the cutoff C. The false positivity FP associated with Cis the proportion of

Sulfate, sulfide and wild rice 4



good cases whose X exceeds C and so are wrongly classified. The specificity is 1 — FP: the proportion of
good cases whose X does not exceed C and which are therefore correctly classified at the cutpoint C.
Sensitivity, specificity and FP are often expressed as percentages.

The ROC is a plot of sensitivity versus FP, generated by varying C across the whole range of the data. A
widely-used guidance (CLSI EP24 A2) discusses the use of ROC curves.

The ROC curve of a good classifier rises steeply from the origin before turning over and going to the
point (1,1). The ROC of a worthless predictor would be a straight line from the origin to the point (1,1).

The area under the ROC curve, the AUC, is a summary measure of the ability of X to distinguish good
from bad cases. The AUC is 1 for a classifier that separates good cases from bad perfectly, and is 0.5 for
a worthless classifier. The AUC has a direct interpretation. In our context, if you take one random water
body with wild rice and one without, the AUC is the probability that the one without wild rice has higher
sulfide than the one with wild rice.

There is a formal statistical significance test, the Wilcoxon test, for whether the AUC is significantly
better than 0.5, that is, whether X does better than blind guessing.

The ROC curve for sulfide and wild rice presence in the full data set is shown as Figure 1. Its AUC is
0.653. The Wilcoxon test gives P = 0.0069 showing that using the sulfide level perform significantly
better than blind guessing. But the actual AUC of 0.653, though statistically significant, is much closer to
the 0.5 you get by flipping a coin than it is to 1. While, at 65.3%, a water body without wild rice has a
better than 50% chance of a higher sulfide levels than a water body with wild rice, its odds are not much
better.

Like the proportion of deviance explained, the AUC paints a picture of sulfide as one fairly small part of
the picture: statistically significant but far short of determinative.
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Figure 2. Youden index for different cutpoints.

The ROC curve also provides an objective way to determine a cutpoint. In an ideal situation, the ROC
rises steeply to an “elbow” high up on the left of the graph, before leveling off and completing its path
to the point (1,1). Such an elbow, when one exists, represents a natural cutpoint. The Youden index,
defined as “sensitivity + specificity”, is an overall measure of the desirability of the associated cutpoint.
A conventional way of selecting a cutpoint is to pick the value maximizing the Youden index, this being,
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arguably, the point “highest on the left.” Figure 2 is an aid to this; it shows the Youden index as a
function of the sulfide cutpoint.

The maximum Youden index is 1.265, given by a sulfide cutpoint of 181 ug/L

But figure 2 also shows that the Youden index exceeds 1.2 for most cutoff values between 118 and 305,
indicating that within this range, sensitivity and specificity are essentially trading off on a one for one
basis and implying that a case could be made for any value within this range.

Repeating the ROC analysis on the subset of 96 water bodies with transparent water gave a slightly
smaller AUC of 0.653 with less significance, P=0.0172, and leading to a Youden index of 1.245 at the
cutpoint 0.093, somewhat below the values indicated for the full data set.

Another perspective on possible cutpoints comes from a changepoint analysis. The methodology of
Hawkins (2001) was applied to the 96-body data set to find the cutpoint that optimally distinguishes the
water bodies with wild rice from those without on the basis of their porewater sulfide. In this analysis,
the optimal cutpoint was 274 ug/L.

FINDING 3.1: Sulfide has a statistically significant separation between water bodies with and without
wild rice, but is not particularly effective in differentiating between the two.

FINDING 3.2: The ROC curve does not identify a clear choice for a cutpoint on sulfide.

4. The MPCA assessment of performance is questionable. This refers to Chapter 1 F Comparison of
an equation-based standard to fixed standards: Error rates and concerns.

Contrary to my conclusion that SO4 has no perceptible connection to wild rice, the MPCA document
reports quite favorable performance for the proposed water-body-specific sulfate standard. However
this performance is against a surrogate endpoint — sulfide being below 120 pg/L — and not the actual
endpoint of interest — the presence or absence of wild rice.

Surrogate endpoints are acceptable in some circumstances, notably
e when the surrogate is more easily available, or available sooner, than the primary endpoint;
and
e the surrogate endpoint is closely related to the primary endpoint.

Neither of these circumstances motivating surrogate endpoints appears relevant in this problem. Itis
implausible that measuring the chemistry of a water body is faster, cheaper or more convenient than a
visual assessment of its vegetation. On the second requirement, sulfide is a quite imperfect predictor of
wild rice presence and health, a deficiency that the MPCA report itself notes.

FINDING 4: Thus the use of this surrogate endpoint seems questionable, as do the resulting
conclusions.

5. All four analytes vary substantially from time to time within the same water body. This relates to
Chapter 1D Assumption that SO4, TOC, iron and sulfide are in a steady state at field sites.
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Some water bodies were sampled more than once, but where a body had more than one measurement,
MPCA’s primary analyses used only one. Their analysis invoked the “steady state” concept that the
water body chemistry does not change much over time, and it is appropriate to check on this.

The data set “MPCA_Field_Survey Data_with_calculated_protective_sulfate_concentration” contained
267 records covering 165 waterbodies. Of these, 53 bodies provided more than one record of some or
all of the key variables sulfide, SO4, Fe and TOC. The repeat measurements at the same water bodies
were taken at different dates. The standard deviation of the sampling date within a waterbody was 210
days, or some 7 months.

The multiple readings of these measures within the same water body were analyzed by a random effects
analysis of variance to separate out the variability within and between water bodies. Calculations used
the “Imer” command from the R package “Ime4”. To correct for any major seasonal effects, the model
included sine and cosine terms with period one year and six months.

All four of the concentrations were transformed to common logs.

This results of this analysis follow.
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Figure 3. Sulfide repeat sampling

Figure 3 is a comparative box and whisker plot of the log-transformed sulfide values measured at
different times broken down by waterbody. Visually, the plot shows variability within a water body
comparable in scale to that between water bodies. This visual impression is quantified by the analysis of
variance. In this, the term “keeplake” corresponds to variation from one water body to another;
“Residual” refers to variation over time within a water body.

REML criterion at convergence: 129.3
Random effects:

Groups Name Variance Std.Dev.
keeplake (Intercept) 0.10763 0.3281
Residual 0.08246 0.2872

The log-transformed sulfide level varies from one water body to another with a standard deviation of
0.33. However within the same water body, it varies from one time to another with a similar standard
deviation of 0.29. A standard deviation of 0.29 on the log10 scale corresponds to a coefficient of
variation of about 70% on the original scale. At this level, two sulfide readings on the same water body
have a 1 in 3 chance of differing by more than 100%, a proportion supported by the actual successive
sulfide readings.

In other words, the sulfide level of a water body is an elusive, moving target.
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Figure 4. Fe repeat sampling

Figure 4 shows the same picture of the log-transformed iron level. This too is visually highly variable
within a water body. The analysis of variance gives

REML criterion at convergence: 257.8558
Random effects:

Groups Name Std.Dev.
keeplake (Intercept) 0.3376
Residual 0.4776

The standard deviation within a water body is considerably higher than that between water bodies.

As the four concentrations have been log transformed, they are dimensionless, and it is legitimate to

compare the standard deviations of the different analytes. Thus one can note that the variability in Fe

from one water body to another is comparable to that of sulfide, but within a water body, Fe is
considerably more variable than sulfide.
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Figure 5. TOC repeat sampling

Figure 5 gives the box and whisker plot for log-transformed total organic carbon. The analysis of
variance gives

REML criterion at convergence: 107.494
Random effects:

Groups Name Std.Dev.
keeplake (Intercept) 0.5401
Residual 0.2013

TOC within a water body is much more stable that Fe or sulfide, but it varies more from one water body

to another.
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Figure 6. SO4 repeat sampling

Finally, Figure 6 shows log-transformed SO4. The analysis of variance gives

REML criterion at convergence: 185.077
Random effects:

Groups Name Std.Dev.
keeplake (Intercept) 0.7556
Residual 0.2517

S04 varies much more between waterbodies than do sulfide, Fe and TOC, and its variability within a
water body is comparable with that of sulfide and TOC.

FINDING 5: In summary, all four analytes show substantial variability over time within the same water

body. A snapshot of the chemistry at a given time may produce substantially different values than
one made at another time. The steady state assumption is therefore not validated particularly well.
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6. S04, TOC and Fe are statistically significant but imprecise predictors of sulfide. This refers to
Chapter 1 C. Relationship between surface water sulfate and porewater sulfide.

The regression model connecting sulfide to SO4, TOC and Fe in the full data set is:

Im(formula = logsulfide ~ 1ogS04 + logTOC + logFe

Coefficients:
Estimate Std. Error t value Pr(G|lt])
(Intercept) 0.97145 0.38938 2.495 0.0142 *

1ogS04 0.40241 0.05368 7.497 2.27e-11 ***
logTOC 0.45564 0.07832 5.818 6.65e-08 ***
logFe -0.69130 0.10748 -6.432 3.91e-09 ***

Residual standard error: 0.3751 on 104 degrees of freedom
Multiple R-squared: 0.491, Adjusted R-squared: 0.4763
F-statistic: 33.44 on 3 and 104 DF, p-value: 3.253e-15

As expected, all three terms in the model are highly statistically significant, as is the overall regression.

However, while significant, the regression explains less than half the variability (R? = 0.491), implying
that other factors and random variability are responsible for most of the sulfide variability.
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Figure 7. Predicting sulfide from SO4, FE and TOC

Figure 7 shows this graphically. It is a plot of the actual sulfide values against the value predicted by the

regression on SO4, Fe and TOC. The plot is on a double log scale. The solid line is the line of identity.
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The two dotted lines mark where the actual sulfide differs from the model prediction by a factor of 2.
As the graph makes clear, the actual sulfide level quite commonly differs from its prediction by this
factor of 2 or more. This is shown by the points lying outside the dotted lines.

FINDING 6.1 In other words, the highly significant regression nevertheless makes sulfide predictions
that are commonly wide of the mark.

FINDING 6.2: Putting various pieces of the puzzle together,

o There is a statistically significant but imprecise relationship of SO4, Fe and TOC to sulfide, and

o There is a statistically significant but modest relationship of sulfide to wild rice.

o This chain of relationships falls apart when the intermediate of sulfide is removed and one
attempts to predict wild rice directly from SO4, Fe and TOC. Then the unexplained variability
in the two relationships overwhelms the modest associations, leading to the lack of significant
association between SO4, Fe and TOC and the presence or absence of wild rice.

7. The proposed sulfide cutoff of 120 ug/L is not well supported and would lead to many false
alarms.

Continuing with the possibility of using the sulfide level as a classifier and taking a closer look at some
proposed cutoffs, the usual measures of performance at the MPCA’s 120 ug/L applied to the 96 water
bodies with acceptable transparency are

Cutoff 120
Sulfide high Sulfide low total
Rice absent 15 15 30
present 18 48 66
Total 33 63 96

Sensitivity and CI 50.0% 33.2% 66.8%
Specificity and CI 72.7% 61.0% 82.0%
Sens + Spec and ClI 122.7% 101.9%  143.6%
Concordance and CI 65.6% 55.7% 74.4%
PPV and CI 45 5% 29.8% 62.0%
NPV and CI 76.2% 64.4% 85.0%

The sensitivity, specificity and Youden index (sensitivity + specificity) have been mentioned. Looking
beyond them to the outcomes of testing, the positive predictive value, PPV, is the probability that a high
sulfide truly corresponds to lack of wild rice. This highly relevant as it tells you what fraction of followup
after a signal of high sulfide will be productive in identifying genuine problems.

At the 120 pg/L cutoff, the PPV is less than 50%. The majority of high sulfides will therefore be false
alarms and so most of the effort involved in following up high sulfide values will be wasted.

The negative predictive value, NPV, is the mirror image of this — the probability that a water body with
sulfide below the cutoff does indeed host wild rice. A high NPV would imply that the water bodies that
are categorized as good on the basis of low sulfide most likely are good and do not need much
attention.

Sulfate, sulfide and wild rice 14



The NPV of 76.2% is fair to good. It does however mean that a quarter of the water bodies with this low
sulfide level nevertheless do not have wild rice, leading one to wonder whether some simple
intervention might bring wild rice to these water bodies,

The concordance, 65/96 = 66%, is the proportion of water bodies identified correctly.

The corresponding figures for the 181 pg/L that optimizes the Youden index, and the 274 pg/L that
optimizes the changepoint test are:

Cutoff 181
Sulfide high Sulfide low total
Rice absent 11 19 30
present 10 56 66
Total 21 75 96

Sensitivity and ClI 36.7% 21.9% 54 _5%
Specificity and CI 84 .8% 74.3% 91.6%
Sens + Spec and CI 121.5% 102.2% 140.8%
Concordance and CI 69.8% 60.0% 78.1%

PPV and CI 52.4% 32.4% T1.7%
NPV and CI 74.7% 63.8% 83.1%
Cutoff 274
Sulfide high Sulfide low total
Rice absent 8 22 30
present 6 60 66
Total 14 82 96

Sensitivity and CI 26.7% 14.2% 44 4%
Specificity and CI 90.9% 81.6% 95.8%
Sens + Spec and CI 117.6% 100.3% 134.9%
Concordance and CI 70.8% 61.1% 79.0%
PPV and CI 57.1% 32.6% 78.6%
NPV and CI 73.2% 62.7% 81.6%

The higher cutoffs give progressively better concordance, going from 66% to 71% as the cutoff goes
from the MPCA’s suggested 120 ug/L to the Youden optimum of 181 ug/L and the changepoint optimum
of 274 pg/L. The PPV increases substantially, going from 45.5% to 57.1% indicating that effort spent in
diagnosing high sulfide values is spent more productively.

The NPV decreases slightly, from 76% to 73%. This means that the clean bill of health coming from a
sulfide below the cutoff becomes less clean as the cutoff increases. However the small change — from

76% to 73% -- shows that the reduction is not substantial.

FINDING 7: In summary, going from a sulfide cutpoint of 120 to 274 ug/L produces many fewer alarms,
and those alarms that are produced are much more likely to indicate real problems with the wild rice.

8. Discriminant Analysis Approach using Sulfide
The problem faced in monitoring water body chemistry is a decision — on the basis of the current

chemistry, deciding whether or not to flag the water body as suspicious of being inhospitable to wild rice
and requiring closer investigation. The conventional statistical model for this problem is a linear
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discriminant analysis (LDA, Anderson 2003, Chapter 6). Unlike the other calculations made so far, LDA
pays explicit attention to the tradeoff between the consequences of dealing with false positives and with
false negatives.

It was applied to the 96 water bodies transparent enough to be thought hospitable for wild rice.

Using X, the common log of the sulfide as the discriminator, these water bodies fall in two populations:
1. Those in which wild rice is absent, of which there are 30,
2. Those in which wild rice is present, of which there are 66.

The sulfide data from the 96 water bodies of interest give summary statistics
Mean of X in population 1 =2.26
Mean of X in population 2 = 1.96
Pooled variance = 0.22

Following Anderson section 6.5.1, the optimal classification rule is to classify a water body as suspect if
its sulfide value satisfies

X —0.5(2.26 +1.96)
0.22

The constant k is defined as

k :q—ZR, where R :w

o L(2[D)
The constants g; and g are the proportions of water bodies that do not, and do harbor wild rice. In the
96-body data set, it is reasonable to estimate the ratio g»/q: by 66/30, the proportions in the data set.

(2.26-1.96) >log, k

The constants L reflect the “loss” incurred by the two types of potential misclassification. L(1]2) is the
loss when you declare a water body suspect when in fact it can harbor wild rice, and L(2]1) is the loss
when you declare a water body acceptable when in fact it can not harbor wild rice. Note that only the
ratio of these numbers, and not their actual values, is relevant.

Solving the optimal classifying equation for X using these values for g; and g; classifies the water as
suspect if

X > 2.11+%(0.79+loge R)=2.69+0.73log, R

Values for the ratio R could be found by considering the follow-up steps needed to determine that the
classification was wrong and evaluating how onerous they are, but a sensitivity calculation is illustrative.

Consider the values R = 0.5, 1 and 2, ranging from the two types of error being equally severe to one
being twice as bad as the other. These values of R lead to the sulfide cutoffs

R Cutoff (ug/L)
0.5 153
1 490
2 1570
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FINDING 8. Even the lowest of these numbers is above the 120 ug/L proposed in the MPCA document.
These numbers provide further evidence that, if sulfide is used as an indicator of suitability for wild
rice, a higher sulfide cutoff should provide a better use of resources for followup.
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